

    
      
          
            
  



About the Cyckei Project

Cyckei is a battery cycling application designed to carry out charging, discharging, and data collection on lithium-ion cells. It is designed to interface with the Keithley 2602A/B SourceMeter for calorimetry testing, but can be used in a variety or setups.

The application uses a Python-like scripting format in order to write cycles that are carried out on cells. To learn more about scripts, read the Creating Scripts section or look at the example below.

for i in range(3):
  AdvanceCycle()
  CCCharge(0.1, reports=(("voltage", 0.01), ("time", ":5:")), ends=(("voltage", ">", 4.2), ("time", ">", "4::")))
  CCDischarge(0.1, reports=(("voltage", 0.01), ("time", ":5:")), ends=(("voltage", "<", 3.0), ("time", ">", "4::")))
  Rest(reports=(("time", "::1"),), ends=(("time", ">", "::15"),))





Cyckei is open source, and we encourage users to modify the code to fit a given setup. Details on contributing to the project are in our Contributing section.

Cyckei is currently developed and maintained by Vincent Chevrier at Cyclikal LLC, Clark Ohnesorge, and Gabriel Ewig. For more information about Cyclikal, visit cyclikal.com [https://cyclikal.com].


[image: _images/client.png]

Screen shot of Cyckei channel tab on Mac OS.






          

      

      

    

  

    
      
          
            
  
Installation


Host System Setup

Although Cyckei is developed on and for a variety of platforms, most internal usage and testing is done on Windows 10 running the latest release of Python 3. Other platforms may require more complex configuration and additional stability testing.

Cyckei relies on the PyVISA wrapper to communicate with any devices, and generally requires an additional VISA library as well as a driver for the device or adaptor which PyVISA controls. If the PyVISA python library is installed, you can use the following code in a python interpreter to list the devices which it detects. If nothing is found, proceed with the Host System Setup.

import pyvisa
rm = pyvisa.ResourceManager()
print(rm.list_resources())





Installing the necessary drivers can be difficult depending on your system. The National Instruments GPIB-USB-HS adaptors that we use require both a VISA library as well as a GPIB driver to function with PyVISA, Cyckei’s core library. Installing each piece of software for different configurations is summarized below.


VISA


PyVISA-py [https://pyvisa-py.readthedocs.io/]

PyVISA-py is a pure python backend for PyVISA. It offers less functionality than NI-VISA, but appears to work fine with Cyckei based on limited testing. More information about PyVISA-py and installation instructions can be found in their documentation [https://pyvisa-py.readthedocs.io/].



NI-VISA [https://www.ni.com/en-us/support/downloads/drivers/download.ni-visa.html]

NI-VISA is the VISA library developed by National Instruments it is closed source and only available for certain platforms, but offers the most functionality. NI-VISA can be downloaded at this site [https://www.ni.com/en-us/support/downloads/drivers/download.ni-visa.html].




GPIB


NI-488.2 [https://www.ni.com/en-us/support/downloads/drivers/download.ni-488-2.html]

Like NI-VISA, NI-488.2 is National Instruments’ GPIB driver. It is simple to install, but has very limited compatibility especially on Linux. Downloads for NI-488.2 can be found here [https://www.ni.com/en-us/support/downloads/drivers/download.ni-488-2.html].



Linux-GPIB [https://linux-gpib.sourceforge.io/]

Linux-GPIB is a GPL licensed GPIB support package for Linux. In addition to the C API, it includes bindings for multiple languages including Python. Linux-GPIB must be compiled for your OS and requires some configuration, but works fine with PyVISA. To learn more about Linux-GPIB and download the source code, visit sourceforge [https://linux-gpib.sourceforge.io/].





Installation


For Users and Developers

The Cyckei source code is available on GitHub [https://github.com] at our public repository [https://github.com/cyclikal/cyckei] , and can be cloned locally to run the latest version.

git clone https://github.com/cyclikal/cyckei.git
cd cyckei





Cyckei requires Python 3 in addition to some packages which can be installed via pip and the included requirements file. Consult setup.py for a complete list of requirements.

Python can be run directly from source using the cyckei.py script in the root of the repository.

python cyckei.py





For more information about editing and contributing to Cyckei see Contributing.






          

      

      

    

  

    
      
          
            
  
Using Cyckei


First Launch

Cyckei can be launched for the first time from the root folder using:

python cykei.py





Upon first launch, Cyckei will create a cyckei directory in the
user’s home folder to hold scripts, test results, logs, and
configuration. Cyckei will also create a server_data text file that facilitates
the clients memory of the server’s activities.

Before running tests, Cyckei must be configured to properly interface with any devices. Each channel should
be setup in the config.json file with the correct GPIB address and any other
relevant information. A default configuration is automatically
generated, and instructions on further configuration can be found in the Editing Configuration section.



Client, Server, and Explorer

Cyckei comes with three sibling applications: A server, a client, and the explorer. The server and
client act in tandem, while the explorer is independent. Server performs the work of sending commands to cycle
cells, while the client provides the user an interface to interact with the server. The explorer is used for
viewing completed tests and creating new scripts to be run by the server.

The server should be launched before a client from the root directory with

python cyckei.py server





If a client does not have a server to connect to, it will be essentially non functional. After the server
is launched the client can be launched from the root directory with

python cyckei.py client





Finally, the explorer can be launched from the root directory with

python cyckei.py explorer





On Windows a bash file can be set up as a shortcut to run each command sequence.



Starting a cycle

Various attributes of the cycle may be set in before starting a cycle:








	Option

	Type

	Description





	Script

	file

	Script with desired protocol. Gives option to select any local file.



	Log file

	text

	Path to output file. Placed in the specified logs folder.



	Cell ID

	text

	Identification for cell. Recorded to output file.



	Comment

	text

	Requester’s comment for cycle. Recorded to output file.






The available buttons can be used to Start, Stop, Pause, or Resume the
protocol.



Creating Scripts

Scripts can be created in the user’s preferred editor or in the separate explorer application.
This editor will automatically load the default included scripts, but can be used to
open and edit any local files.


[image: _images/explorer-scripts.png]

The explorer includes a protocol generator above the editor to streamline script creation.
This can be used to specify attributes, and insert generated lines of code into the script.

Scripts are written in regular python code, and can contain for loops and
other statements to control cycle flow. There are seven built in
protocols to control the cycler. Most of these protocols take some or
all of the following parameters:








	Parameter

	Description

	Format





	Value

	Set a certain voltage or current to run at.

	float



	Reports

	Set intervals of time and/or change in voltage or current to record at.

	reports=((“current”, float), (“time”, “int:int:int”))



	Ends

	Set threshold of time and/or change in voltage or current to end current protocol.

	ends=((“current”, “<”, float), (“time”, “>”, “int:int:int”))






The following protocols are available:









	Protocol

	Description

	Parameters

	Example





	AdvanceCycle

	Start recording under next cycle in output file.

	None

	AdvanceCycle()



	CCCharge

	Charge at a set current.

	Value, Reports, Ends

	CCCharge(0.1, reports=((“voltage”, 0.01), (“time”, “:5:”)), ends=((“voltage”, “>”, 4.2), (“time”, “>”, “4::”)))



	CCDischarge

	Discharge at a set current.

	Value, Reports, Ends

	CCDischarge(0.1, reports=((“voltage”, 0.01), (“time”, “:5:”)), ends=((“voltage”, “<”, 3.0), (“time”, “>”, “4::”)))



	CVCharge

	Charge at a set voltage.

	Value, Reports, Ends

	CVCharge(4.2, reports=((“current”, 0.01), (“time”, “:5:”)), ends=((“current”, “<”, 0.005), (“time”, “>”, “24::”)))



	CVDischarge

	Discharge at a set voltage.

	Value, Reports, Ends

	CVDischarge(4.2, reports=((“current”, 0.01), (“time”, “:5:”)), ends=((“current”, “<”, 0.005), (“time”, “>”, “24::”)))



	Rest

	Record at a set interval.

	Reports, Ends

	Rest(reports=((“time”, “::1”),), ends=((“time”, “>”, “::15”),))



	Sleep

	Record at a set interval and turn channel off in between.

	Reports, Ends

	Sleep(reports=((“time”, “:1:0”),), ends=((“time”, “>”, “::15”),))






An example script is shown below. There is also a simple script saved in
the scripts folder which is available whenever the client is started.

for i in range(3):
  AdvanceCycle()
  CCCharge(0.1, reports=(("voltage", 0.01), ("time", ":5:")), ends=(("voltage", ">", 4.2), ("time", ">", "4::")))
  CCDischarge(0.1, reports=(("voltage", 0.01), ("time", ":5:")), ends=(("voltage", "<", 3.0), ("time", ">", "4::")))
  Rest(reports=(("time", "::1"),), ends=(("time", ">", "::15"),))





It is important to note that variables cannot be assigned in the standard pythonic way

C = 0.1





However, for loops can be used to capture values as variables as shown in this next example where C
is caputred as 0.1 A and substituted in for C in the CCCharge and CCDischarge protocols.

The example also shows the nesting of loops. In this case a total of 500 cycles would be completed, where C/4 cycling is done with a C/20 cycle every 50 cycles.

for C in [0.1]:
    for i in range(10):
        AdvanceCycle()
        CCCharge(C/20, reports=(("voltage", 0.005), ("time", ":5:")), ends=(("voltage", ">=", 4.2), ("time", ">", "30::")))
        CCDischarge(C/20, reports=(("voltage", 0.005), ("time", ":5:")), ends=(("voltage", "<", 3), ("time", ">", "30::")))
        for j in range(49):
            AdvanceCycle()
            CCCharge(C/4, reports=(("voltage", 0.005), ("time", ":1:")), ends=(("voltage", ">=", 4.2), ("time", ">", "6::")))
            CCDischarge(C/4, reports=(("voltage", 0.005), ("time", ":1:")), ends=(("voltage", "<", 3), ("time", ">", "6::")))





Access to the python interpreter allows powerful options. The next example shows testing of rate capability in a convenient loop.
Three cycles are completed at discharge rates of C/20, C/10, C/5, C/2, and C with the charge remaining C/20 in all cases.

for C in [0.1]:
    for X in [20,10,5,2,1]:
        for i in range(3):
            AdvanceCycle()
            CCCharge(C/20, reports=(("voltage", 0.005), ("time", ":5:")), ends=(("voltage", ">=", 4.2), ("time", ">", "30::")))
            CCDischarge(C/X, reports=(("voltage", 0.005), ("time", ":5:")), ends=(("voltage", "<", 3), ("time", ">", "30::")))





Scripts are automatically checked when they are sent to the server. They
can also be manually checked by clicking the “Check” button below the editor.
Checking a script ensures that (1) the script only contains
legal arguments and (2) can be loaded by the server without immediate
errors. Checking your scripts is a good practice to mitigate possible
formatting issues and errors. However, care should still be taken while
writing scripts as they are executed as any other python code within the
application.



Using Plugins

Data plugins are available to supplement current and voltage data measurements.
The plugin scheme is designed to be flexible in order to support any device with the use of custom configuration.
A random plugin is included by default with the Cyckei distribution.
Other plugins can be written by developing a similar DataController object and including it in the plugins folder of the Cyckei recording directory.
Below is an example plugin for reference.

import logging
from random import randint

logger = logging.getLogger('cyckei')

class DataController(object):
    def __init__(self):
        self.name = "random"
        logger.info("Initializing Random Recorder plugin")

    def read(self):
        logger.debug("Generating random integer...")
        return randint(1, 101)







Viewing Results

Results are created to document measurements from each cell throughout it’s
cycle. They also have details about the cell and the cycle that was run
on it. Result files are saved to the tests folder specified in the
configuration under the specified name. To view a result file from the client
application, just open the explorer application. All result files are automatically
loaded on startup in the explorer application, and new or updated ones can be viewed after clicking
reload. Although you can copy the contents of a result file to an excel
spreadsheet, result files should not be opened with excel or another
application directly. Doing this can cause the file to become locked and
prevent Cyckei from editing it.


[image: _images/explorer-results.png]



Viewing Logs

Log text files are stored in the logs folder in Cyckei. These logs capture
information about the exectuion of their respective program. For example:
server or client logs. In these files Errors, Warnings, and different steps
in the exectution of the programs are stored.



Editing Configuration

Editing the configuration file is crucial for the client to function
properly. Any custom configuration files should be written in JSON and
should mirror the default config.json in the program’s root directory.
Each section is described in more detail below:


	channels - A list of channels currently connected to the computer.


	channel (string) - Channel number for identification within the application.


	gpib_address (int) - Hardware address of GPIB interface can be found with a NI VISA application or wth the code in Plugin Overview.


	keithley_model (string) - Model number of keithley being used.


	keithley_channel (string) - Particular channel on said keithley (a or b).






	zmq - A dictionary of properties that control how the client and
server communicate.

*zmq* is now stored in variables.ini in the cyckei assets file


	port (int) - Port to communicate over.


	client-address (string) - Address for the client to connect to. Usually localhost.


	server-address (string) - Address for the server to listen on. Usually all.


	timeout (int) - Number of seconds to wait for server response. 10 seconds seems to work well for most configurations.






	data-plugins - A list of data plugins to load and execute alongside normal data collection.
Plugins should be placed in the plugins directory of the Cyckei recording folder.


	device - The identifier for which device to load. Currently, keithley2602 is the only acceptable model.


	verbosity - The amount of information to be saved to log files.
Generally should be set to 20, but the following levels can also be
used. Lower values print more information for debugging purposes.


	Critical - 50


	Error - 40


	Warning - 30


	Info - 20


	Debug - 10


	Notset - 0








Here is an example configuration file for a simple setup running on port
5556 with one Keithley with address 5:

{
    "channel_readme": "List of keithley channels to connect.",
    "channels": [
      {
        "channel": 1,
        "gpib_address": 9,
        "keithley_channel": "a",
        "model": "2602B"
      },
      {
        "channel": 2,
        "gpib_address": 9,
        "keithley_channel": "b",
        "model": "2602B"
      },
      {
        "channel": 3,
        "gpib_address": 5,
        "keithley_channel": "a",
        "model": "2602B"
      },
      {
        "channel": 4,
        "gpib_address": 5,
        "keithley_channel": "b",
        "model": "2602B"
      }
    ],
    "zmq":{
        "port": 5556,
        "client-address":"tcp://localhost",
        "server-address":"tcp://*",
        "timeout": 10
    },
    "plugins_readme": "List of plugins to connect, each declaring sources.",
    "plugins": [
      {
        "name": "randomizer",
        "module": "randomizer",
        "enabled": false,
        "sources": [
          {
            "port": null,
            "meta": [1, 10]
          },
          {
            "port": null,
            "meta": [11, 20]
          }
        ]
      }
    ],
    "verbosity": 30
}









          

      

      

    

  

    
      
          
            
  
Plugins


Plugin Overview

Although the base version fo Cyckei is designed to control and capture data from Keithley SourceMeters, the functionality can be extended with plugins.
Plugins aim to support simultaneous data collection with additional instruments that can interface with a computer.
This requires that the data capturing eventually be queried and returned by python code, but the method by which this is done is very flexible.



Installation & Configuration

Plugins are distributed independently of Cyckei as python packages.
These packages are generally able to be executed independently for testing purposes, but are designed to be loaded by Cyckei for data capture.

Generally, installation involves cloning the github repository, changing to the directory and installing the python package:

To be loaded by cyckei, an entry must also be added to the plugins section of Cyckei’s config.json.
Plugins should provide an example configuration and instructions on how to adjust it.
The configuration for the [randomizer] plugin is included for reference.

{
  "name": "randomizer",
  "enabled": true,
  "sources": [
    {
      "port": null,
      "meta": [1, 10]
    },
    {
      "port": null,
      "meta": [11, 20]
    }
  ]
}





The configuration includes a number of reference values such as a name, whether the plugin should be enabled.
It also has a list of sources that can be assigned to different channels.
The mettler-ag204 plugin, for example, has the ability to interface with multiple Mettler Toldedo AG-204 scales, and declares them as several sources.
The Cyckei interface then has the ability to assign different scales to individual channels for data capture.
The exact parts of each source entry may depend on the individual plugin, but a port number and meta information are pretty standard.
Port numbers and other information should be changed as necessary for your setup.



Running

Once configured, the different data sources exposed by plugins will be visible in the Cyckei Client.


[image: _images/plugins.png]

Once available, it is as simple as selecting the source in the corresponding dropdown to assign a device to each channel.
Once assigned, data from the device will be merged into the output file for that channel.



Available Plugins

The following plugins are currently known to be available. Submit a pull request to add or update entries for custom plugins.

An example of using interpreted text









	Name

	Purpose

	Source

	Version





	Randomizer

	Example, produces random numbers.

	GitHub [https://github.com/cyclikal/cyp-randomizer]

	0.1 Stable



	Mettler AG-204

	Weight from Mettler Toledo AG-104.

	GitHub [https://github.com/cyclikal/cyp-mettler-ag204]

	0.1 Stable



	Pico TC-08

	Temperature from Pico TC-08 Thermocouples.

	GitHub [https://github.com/cyclikal/cyp-pico-tc08]

	0.1 Stable



	Novus-n1050 PID

	Reads data from connected Novus-n1050 PID.

	GitHub [https://github.com/cyclikal/cyp-novus-n1050]

	0.1 Stable








Custom Plugins

Custom plugins are simple to create, especially if there is an established method of reading device data into python already.
It is recommended that you follow the scheme of the [Randomizer Plugin](https://github.com/cyclikal/cyp-randomizer).

The main component of any plugin is the PluginController class.
This class is a child of Cyckei’s BaseController class which provides a number of helper functions including the essential read() method.
The cyp-randomizer package includes in-line documentation to demonstrate the changes that need to be made to create a plugin for a new device.
Generally most setup should be performed in the load_sources() method, and any steps to capture data should occur in the read() method.
It is good practice to create some basic documentation to accompany a custom plugin, particularly if additional drivers need to be installed. Without
sufficient documentation it is unlikely that plugins will be officially supported.

Another good example is the mettlerscale plugin, which gathers data from a Mettler-Toledo balance.
In addition to having a read() function, this plugin utilizes a MettlerLogger object to interact with each individual scale on a different port.





          

      

      

    

  

    
      
          
            
  
Contributing


Developing Cyckei

Cyckei is an open source project created with the intention of allowing users to customize it to fit their equipment and setup.
We encourage users with some programming knowledge to contribute changes that may be helpful to the community.



Workflow

GitHub [https://github.com] hosts and manages version control for the Cyckei source code. The Cyckei project is kept under Cyclikal LLC’s repository [https://github.com/cyclikal/cyckei].
To submit patches to the codebase, fork the project to a personal GitHub [https://github.com] account and make any desired changes.
After completing a bug fix or new feature, open a new merge request into Cyclikal’s repository along with thorough documentation.
After review, the patch may integrated into Cyckei’s development branch.





          

      

      

    

  

    
      
          
            
  
Changes & Features


0.0 Yin - 11/14/2018

Original version of Cyckei.


Notable Changes


	Create complex UI to handle all software functions


	Implement cycling protocols such as CCCharge and Sleep







0.1 Vayu - 07/2/2019

Intended to significantly improve the performance and responsiveness of
the application by improving the execution pattern and introducing
threading to the Qt interface. Also overhauls the UI and brings many
components up to date.


Notable Changes


	Run client communication functions as synchronous worker


	Switch GUI from PyQt5 to PySide2


	Improve layout and scaling of UI elements






Development Releases


	0.1.dev1, 05/26/2019 – Initial Cyclikal commits


	0.1.dev2, 05/30/2019 – Adjust layout and switch to PySide2


	0.1.dev3, 05/31/2019 – Create threaded workers for each action


	0.1.dev4, 06/02/2019 – All primary buttons execute as separate thread


	0.1.dev5, 06/03/2019 – Message Boxes and status updates are sent through signal/slot pattern


	0.1.dev6, 06/12/2019 – Overhaul visual appearance for simplicity


	0.1.dev7, 06/12/2019 – Separate client and server packages for proper file access during distribution


	0.1.dev8, 06/13/2019 – Fix over-threading and application exit


	0.1.dev9, 06/27/2019 – Move server to applet and improve OS integration


	0.1.dev10, 06/27/2019 – A bunch of script tab fixes and separated status and feedback on the channel tab






Release Candidates


	0.1rc1, 06/28/2019 – Initial Release Candidate


	0.1rc2, 06/29/2019 – Fixed some bugs, enable MenuBar on Windows, and added exception logging







0.2 Alviss - 8/01/2019

Smaller update focused on simplifying the code to aid in further
development. This includes unifying as many commonly used functions as
possible and adding code documentation. Also adds single file
executables because they’re fun.


Notable Changes


	Unify common functions and generally refactor codebase


	Support distribution of compiled executables


	Improve documentation


	Small UI adjustments including dark mode


	Rewrite “Read” and “StatusUpdate” functions for better performance and functionality






Development Releases


	0.2.dev1, 7/15/2019 – Improve Documentation


	0.2.dev2, 7/17/2019 – Switch to PyInstaller build system


	0.2.dev3, 7/20/2019 – Simplify client codebase, unify common functions, improve UI


	0.2.dev4, 7/21/2019 – Introduce Sphinx and add contribution documentation


	0.2.dev5, 7/24/2019 – Small adjustments to prepare release candidates






Release Candidates


	0.2rc1, 7/24/2019 – Fix some small bugs


	0.2rc2, 7/24/2019 – Fix bugs, reduce server calls, and document issues


	0.2rc3, 7/30/2019 – Improve status updates and “Read Cell” function


	0.2rc4, 7/31/2019 – Fix file naming while reading cell, unify versioning


	0.2rc5, 8/01/2019 – Report pre-logging runtime errors







0.2.1

Hotfix updates to Alviss. Includes fixes to delay and improper current measurement and a basic test suite.


Notable Changes


	Fixes to measurement and report timing


	Basic test suite






Development Releases


	0.2.1.dev1, 8/19/2019 – Fix issues with delay and improper current measurement







0.3 Tenzin

Rebuilding existing interfaces after fixing an OS-level threading error.
Adds Cyckei Explorer for editing scripts and viewing recent log files.
Now, again, uses PyPI release system as opposed to freezing.


Development Releases


	0.3.dev1, 1/16/2020 – Implements Cyckei Explorer and rebuilds distribution system


	0.3.dev2, 1/31/2020 – Rebuild check, pause, & resume functionality


	0.3.dev3, 3/28/2020 – Add plugin scheme to support additional data collection


	0.3.dev4, 0/00/0000 – Highlight scripts in explorer & Fix Flickering






Release Candidates


	0.3rc1, 0/00/0000 – TBD







0.4 Skyler

Adds plugin scheme.


	0.4.dev1, 6/29/2020 – Implement Plugin System


	0.4.dev2, 7/22/2020 – Fix Metadata Values


	0.4.rc1, 8/12/2020 – Package-based Plugin System


	0.4.rc2 8/25/2020 – Update documentation for Cyckei and Plugins






0.5 Themis

Stability Update

Added testing schemes for the server and client of Cyckei. Bug fixes catching user input
and preventing crashes. Logging is now done separately for separate aspects of Cyckei.
Added usability to Cyckei client: saving entered info, channel locking when a script is run,
visual indications of runnings scripts, and more. Fully documented server and client.



Possible Features


	
	Client Interface

	
	Better batch management


	Multi-folder script storage


	Script highlighting










	
	Server Software

	
	“Plug-in” style core (lua) script management for different devices


	Implement Cython and threading for improved performance with massive cycles










	
	Hardware Support

	
	Complete Support for Linux


	Simplify VISA and driver installation for end user










	
	Miscellaneous

	
	Automated release delivery
















          

      

      

    

  

    
      
          
            
  
Codebase


Main


This file is for execution as an installed package via ‘cyckei’.


	
class cyckei.cyckei.ColorFormatter(fmt=None, datefmt=None, style='%')

	Extends logging.Formatter. Formatter to add colors and count warning / errors.

Set as the formatter for loggers when they are initalized in start_logging().








	
format(record)

	Called by the logger this object is attached to to format records.


	Parameters

	record (logging.LogRecord) – The record to be formatted.



	Returns

	The Formatter to be used by loggers.



	Return type

	str




















	
cyckei.cyckei.file_structure(path, overwrite)

	Checks for existing folder structure and sets up if missing


	Parameters

	config – Primary configuration dictionary
















	
cyckei.cyckei.handle_exception(exc_type, exc_value, exc_traceback)

	Exception Handler (referenced in start_logging)












	
cyckei.cyckei.load_plugins(config)

	Takes the plugins listed in the config dict and attempts to import and instantiate them.


	Parameters

	config (dict) – Primary configuration dictionary.



	Returns

	
	The first value is a list of PluginControllers extending the BaseController object. The second value is a dict with a key of the plugin name and

	a value of the of the specific plugin instance’s name.









	Return type

	(list, dict)
















	
cyckei.cyckei.main(args=None)

	The entry point for the application that controls the execution of different program branches.

Parses command-line arguments for component and directory.
Checks for and, if necessary, creates file structure at given directory.
Compiles configuration from config and variable files.
Starts logging to both console and file based on argument input.
Launches requested cyckei component (server, client, or explorer).












	
cyckei.cyckei.make_config(args, logger)

	Loads configuration and variables from respective files. Merges them and adds command line arguments for universal access.


	Parameters

	
	args – All processed command line arguments.


	logger (Logger) – The logger to log config creation to.






	Returns

	Completed ‘config’ dictionary.



	Return type

	dict
















	
cyckei.cyckei.parse_args()

	Creates and parses command line arguments


	Returns

	ArgumentParser with filled arguments.
















	
cyckei.cyckei.start_logging(config, logger)

	Creates handlers and starts logging.

Logs to both file (f_handler) and console (c_console).


	Parameters

	
	config (dict) – Primary configuration dictionary.


	logger (Logger) – The logger to initialize.























Client


Widget that controls a single channnel.
Listed in the channel tab of the main window.


	
class cyckei.client.channel_tab.ChannelTab(config, resource, parent, plugin_info, channel_info)

	Object that creates a window to interact with cycler channels from the server.


	
config

	Holds Cyckei launch settings.


	Type

	dict










	
resource

	A dict holding the Threadpool object for threads to be pulled from.


	Type

	dict










	
channels

	A list of ChannelWidget objects.


	Type

	list










	
timer

	A timer for the status of cells.


	Type

	QTimer
















	
__init__(config, resource, parent, plugin_info, channel_info)

	Inits ChannelTab with channels, config, resource, and timer. Creates each channel widget and place in QVBoxlayout.


	Parameters

	
	config (dict) – Holds Cyckei launch settings.


	resource (dict) – A dict holding the Threadpool object for threads to be pulled from.


	parent (MainWindow) – The MainWindow object that created this ChannelTab.


	plugin_info (list) – A list of dicts holding info about installed plugins.


	channel_info (dict) – A dict of nested dicts holding info about each connected channel.


	| – 













	
alternate_colors()

	Sets the channels to alternate between light and dark.












	
paintEvent(event)

	Redraws the window with the current visual settings. Overrides the defaul QT paintEvent.












	
update_status()

	Updates the status section of a channel.
















	
class cyckei.client.channel_tab.ChannelWidget(channel, config, resource, plugin_info, cur_channel_info)

	Object that controls and stores information for a given channel.


	
attributes

	Holds info about the ChannelWidget: Channel info, cell info, script info, etc.


	Type

	dict










	
config

	Holds Cyckei launch settings.


	Type

	dict










	
default_color

	The default background color of the channel.


	Type

	str










	
divider

	Divides the channel widget vertically between info and controls.


	Type

	QWidget










	
feedback

	A label under the controls that gives info when a control is pressed.


	Type

	QLabel










	
json

	Holds the default attribtues of a ChannelWidget. Taken from an outside file.


	Type

	dict










	
script_label

	A gui label that indicates if there is a selected script.


	Type

	QLabel










	
settings

	A list of gui elements to be added to the window, set in the set_settings function.


	Type

	list










	
state

	The step in the protocol performed on a cell.


	Type

	str










	
state_changed

	Indicates whether the channel state has changed.


	Type

	bool










	
status

	A gui label that indicates a cell’s status.


	Type

	QLabel










	
threadpool

	Holds the Threadpool object from resource for threads to be pulled from.


	Type

	dict
















	
__init__(channel, config, resource, plugin_info, cur_channel_info)

	Inits ChannelWidget with attributes, config, divider, feedback, json, script_label, status, and threadpool.


	Parameters

	
	channel (int) – Id number for the channel corresponding with this Widget.


	config (dict) – Holds Cyckei launch settings.


	resource (dict) – A dict holding the Threadpool object for threads to be pulled from.


	plugin_info (list) – A list of dicts holding info about installed plugins.


	cur_channel_info (dict) – A dict holding info about the corresponding channel for this Widget.



















	
button(text)

	Controls what happens when a button on the control panel is pressed.

Creates workers and uses the threadpool to run cycler functions.


	Parameters

	text (str) – Button text that determines which function to do.
















	
get_controls()

	Creates a set of buttons in an element that control the cycler.


	Returns

	A list of gui buttons that control the cycler.



	Return type

	list
















	
get_settings(cur_channel_info, plugin_info)

	Creates all UI settings and adds them to settings list.


	Parameters

	
	cur_channel_info (dict) – A dict holding info about the corresponding channel for this Widget.


	plugin_info (list) – A list of dicts holding info about installed plugins.






	Returns

	a list of gui elements to be added to the window.



	Return type

	list
















	
lock_settings()

	Sets the status of each QObject in settings to be uninteractable












	
paintEvent(event)

	Redraws the window with the current visual settings. Overrides the defaul QT paintEvent.












	
set(key, text)

	Sets the attributes dict using the corresponding key and text.

Used to set ChannelWidget’s script to the one selected in dropdown.


	Parameters

	
	key (str) – The key in the attributes dict in the ChannelWidget to have its value changed.


	text (str) – The new value for the corresponding key in the attributes dict.



















	
set_bg_color()

	Checks whether the background needs to be changed and acts accordingly












	
set_plugin(key, text)

	Sets object’s plugin to one selected in dropdown


	Parameters

	
	key (str) – The key in the “plugins” section of the attributes dict in the ChannelWidget to have its value changed.


	text (str) – The new value for the corresponding key in the “plugins” section of the attributes dict.



















	
set_script(button_text, filename=None)

	Sets the protocol for a channel to run

By default opens a finder window to select a file
If a filepath is already provided then the finder window is skipped.


	Parameters

	
	button_text (str) – The text of the button being pressed.


	filename (str, optional) – The name of the script file at the end of the stored script path. Defaults to None.



















	
set_state(state=None)

	Changes the state of the channel and marks if the state has been changed or not.


	Parameters

	state (str, optional) – The step the channel protocol is on. Defaults to None.
















	
unlock_settings()

	Sets the status of each QObject in settings to be interactable















Main window for the cyckei client.








	
class cyckei.client.client.MainWindow(config)

	An object for generating the main client window and holding information about it.


	
config

	Holds Cyckei launch settings.


	Type

	dict










	
channel_info

	Holds info on channels available on the server.


	Type

	dict










	
channels

	A list of all of the ChannelWidgets in channelView


	Type

	list










	
channelView

	Wrapper object that holds all of the ChannelWidgets.


	Type

	ChannelTab










	
status_bar

	Default status bar for the QWindow.


	Type

	QStatusBar










	
threadpool

	Threadpool of workers for communicating with the server


	Type

	QThreadPool
















	
__init__(config)

	Inits Mainwindow with config, channel_info, channels, channelView, status_bar, and threadpool.

Args:
config (dict): Holds Cyckei launch settings. Is copied to MainWindow’s version of config.
|






	
closeEvent(event)

	Overridden method from QMainWindow for closing the application.


	Parameters

	event (QCloseEvent) – An event carrying flags for closing the Q application.
















	
create_menu()

	Sets up the menu bar at the top of the Main Window.












	
ping_server()

	Checks for an active server and returns a result message in a new window.












	
plugin_dialog()

	Compiles and formats info for installed plugins on the server for display.
















	
cyckei.client.client.main(config)

	Begins execution of Cyckei.


	Parameters

	config (dict) – Holds Cyckei launch settings.



	Returns

	Result of app.exec_(), Qt’s main event loop.
















	
class cyckei.client.socket.Socket(config)

	Object that handles connection, communication, and control of server from the client over ZMQ.


	
config

	Holds Cyckei launch settings.


	Type

	dict










	
socket

	The underlying scoket that acts as the communication between client and server.


	Type

	zmq.socket
















	
__init__(config)

	Inits Socket with config and socket.


	Parameters

	config (dict) – Holds Cyckei launch settings.
















	
info_all_channels()

	Sends a JSON request for information on all channel to server.


	Returns

	A dict of nested dicts containing info about all connected channels.



	Return type

	dict
















	
info_channel(channel)

	Sends a JSON request for information on a channel to server.


	Parameters

	channel (int) – The id number of the channel to request info about.



	Returns

	Information about the requested channel.



	Return type

	dict
















	
info_plugins()

	Sends a JSON request for information on plugins to server.


	Returns

	A list from the server of the plugins that are installed.



	Return type

	list
















	
info_server_file()

	Sends a JSON request for the server file kept by the server.


	Returns

	A dict of nested dicts containing info about all connected channels from the server file.



	Return type

	dict
















	
ping()

	Sends a JSON “ping” to the server to check status


	Returns

	A JSON response from the server with the port the server is on.



	Return type

	dict
















	
send(to_send)

	Sends JSON packet from client to server over zmq socket.


	Parameters

	to_send (dict) – JSON in the form of a python dict to be sent to server.



	Returns

	A JSON response from the server in the form of a python dict.



	Return type

	response (dict)
















	
send_file(file)

	Sends a JSON packet from the client to the server over a zmq socket, loaded from a file.


	Parameters

	file (str) – File path of the JSON file to be loaded and sent to the server.



	Returns

	A JSON response from the server in the form of a python dict.



	Return type

	dict



















Methods and object to handle scripts








	
class cyckei.client.scripts.Script(title, path)

	Object for storing and manipulating strings that act as scripts


	
content

	The text that acts as the script in the file of the script.


	Type

	str










	
path

	The filepath of the file of the script.


	Type

	str










	
title

	The filename of the script being held.


	Type

	str
















	
__init__(title, path)

	Inits Script with content, path, and title.

Args:
title (str): The filename of the script being held.
path (str): The filepath of the file of the script.
|






	
save()

	Saves script content to file using the script’s path and title.












	
update_status()

	Updates the script’s title with ‘*’ if the script’s contents has been edited
















	
class cyckei.client.workers.Check(config, protocol)

	Object used for testing whether a certain protocol can be run.


	
protocol

	The protocol being checked for legality.


	Type

	str










	
config

	Holds Cyckei launch settings.


	Type

	dict










	
signals

	Used for gui signals. Shows the server’s response.


	Type

	Signals
















	
__init__(config, protocol)

	Inits Check with config, protocol, and signals.


	Parameters

	
	config (dict) – Holds Cyckei launch settings.


	protocol (str) – The protocol being checked for legality.



















	
legal_test(protocol)

	Checks if script only contains valid commands.


	Parameters

	protocol (str) – The protocol being checked for legality.



	Returns

	True if protocol is legal, False otherwise.
str: The message that goes with the legality test results.



	Return type

	bool
















	
prepare_json(protocol)

	Packages protocol in json dict to send to server.


	Parameters

	protocol (str) – The protocol being sent to the server.



	Returns

	The protocol packaged with an indication that this is a test for the server.



	Return type

	dict
















	
run()

	Runs the tests for checking the script.


	Returns

	True if protocol is legal and loaded, False otherwise.
str: The message that goes with the legality/load test results.



	Return type

	bool
















	
run_test(protocol)

	Checks if server can load script successfully.


	Parameters

	protocol (str) – The protocol being checked for server loading.



	Returns

	True if protocol is loaded, False otherwise.
str: The message that goes with the load test results.



	Return type

	bool




















	
class cyckei.client.workers.Control(config, channel, command, script=None, temp=False)

	Object for storing a script and sendng it to the server.


	
channel

	Channel object that stores info about itself.


	Type

	ChannelWidget










	
command

	Used by Control in determining which actions to take.


	Type

	str










	
config

	Holds Cyckei launch settings.


	Type

	dict










	
script

	The script for the server to execute. Passed in or taken from the channel.


	Type

	str










	
signals

	Used for gui signals. Shows the server’s response.


	Type

	Signals










	
temp

	Indicates whether recording should be done in temporary files (true) or not (false)


	Type

	bool
















	
__init__(config, channel, command, script=None, temp=False)

	Inits Control with channel, command, config, script, signals, and temp.


	Parameters

	
	channel (ChannelWidget) – Channel object that stores info about itself.


	command (str) – Used by Control in determining which actions to take.


	config (dict) – Holds Cyckei launch settings.


	script (str, optional) – The script for the server to execute. Defaults to None.


	temp (bool, optional) – Indicates whether recording should be done in temporary files (true) or not (false). Defaults to False.



















	
run()

	Calls for a viability check on the loaded script and then sends it to the server.
















	
class cyckei.client.workers.Ping(config)

	Object used to check for an active server.


	
config

	Holds Cyckei launch settings.


	Type

	dict










	
signals

	Used for gui signals. Shows the server’s response.


	Type

	Signals
















	
__init__(config)

	Inits Ping with signals and config.


	Parameters

	config (dict) – Holds Cyckei launch settings.
















	
run()

	Sends a ping to the Socket to check status. Emits the response.
















	
class cyckei.client.workers.Read(config, channel)

	Object used in reading cell information from the server.


	
channel

	Channel object that stores info about itself.


	Type

	ChannelWidget










	
config

	Holds Cyckei launch settings.


	Type

	dict










	
signals

	Used for gui signals. Shows the server’s response.


	Type

	Signals
















	
__init__(config, channel)

	Inits Read with channel, config, and signals.


	Parameters

	
	channel (ChannelWidget) – Channel object that stores info about itself.


	config (dict) – Holds Cyckei launch settings.



















	
run()

	Tell channel to Rest() long enough to get voltage reading on cell.
















	
class cyckei.client.workers.Signals

	Object used by other objects to alert the user to changes, statuses, etc.












	
class cyckei.client.workers.UpdateStatus(channels, config)

	Updates the status below the controls, shown after contacting server


	
channels

	A list of all of the ChannelWidget objects to be updated.


	Type

	list










	
config

	Holds Cyckei launch settings.


	Type

	dict
















	
__init__(channels, config)

	Inits UpdateStatus with channles and config


	Parameters

	
	channels (list) – A list of all of the ChannelWidget objects to be updated.


	config (dict) – Holds Cyckei launch settings.



















	
run()

	Goes through the channels list and sets the gui status text depending on server response from info_all query.
















	
cyckei.client.workers.prepare_json(channel, function, protocol, temp)

	Populates a new package with channel data and returns it


	Parameters

	
	channel (ChannelWidget) – Channel object that stores info about itself.


	function (str) – Used by the server when determining what action to take.


	protocol (str) – A protocol for the server to execute.


	temp (bool) – True records in a temporary file, false records to the proper record directory.






	Returns

	A package populated with the protocol and info about the specified channel.



	Return type

	dict




















Explorer


Main window for the cyckei client.


	
class cyckei.explorer.explorer.MainWindow(config)

	Main Window class which is and sets up itself


	
__init__(config)

	Setup main windows










	
cyckei.explorer.explorer.main(config)

	Begins execution of Cyckei.


	Parameters

	record_dir – Optional path to recording directory.



	Returns

	Result of app.exec_(), Qt’s main event loop.









Controls log tab, which displays logs as they are being recorded


	
class cyckei.explorer.log_viewer.Folder(path, name)

	Object of log, stores title and content of file for quick access






	
class cyckei.explorer.log_viewer.GraphCanvas

	Graphing Canvas using matplotlib






	
class cyckei.explorer.log_viewer.Log(path, name)

	Object of log, stores title and content of file for quick access






	
class cyckei.explorer.log_viewer.LogDisplay

	
	
update(self) → None

	update(self, arg__1: PySide2.QtCore.QRect) -> None
update(self, arg__1: PySide2.QtGui.QRegion) -> None
update(self, x: int, y: int, w: int, h: int) -> None










	
class cyckei.explorer.log_viewer.LogViewer(config, resource)

	Object of log tab


	
log_clicked()

	Display text of clicked file in text box






	
open_explorer(text=None)

	Open logging folder in explorer










	
class cyckei.explorer.script_editor.InsertBar(editor)

	Controls and stores information for a given channel


	
get_settings()

	Creates all UI elements and adds them to elements list






	
update(self) → None

	update(self, arg__1: PySide2.QtCore.QRect) -> None
update(self, arg__1: PySide2.QtGui.QRegion) -> None
update(self, x: int, y: int, w: int, h: int) -> None










	
class cyckei.explorer.script_editor.Script(path, title)

	Stores the File Path, Title, and content of a file


	
save()

	Overwrites the file that shares a file path and title witht the script






	
update_status()

	Changes the file title in the Script interface if the script and the file differ










	
class cyckei.explorer.script_editor.ScriptEditor(config, resource)

	UI window for the script tab of Cyckei Explorer


	
add(file)

	Creates and adds a Script object to the front of the ScriptList and UI FileList






	
alert_check(result, message)

	Opens a pop-up window with an input message






	
check(text)

	Creates and runs a worker to check protocol and verify the validity of a script






	
delete(text)

	Deletes the active file and removes it from the UI






	
help(text)

	Opens the Cyclikal Guide for creating scripts






	
list_clicked()

	Display contents of script when clicked






	
new(text)

	Creates new file and adds it to list as script






	
open(text)

	Opens a new file and adds it as a script






	
save(text)

	Calls the save function of a Script object






	
setup_file_list()

	Create list of script files






	
text_modified()

	Update content of script and update status to show if edited






	
update_editor(active_script_index)

	Updates the UI when which script is active is changed










	
class cyckei.explorer.workers.Check(config, protocol)

	
	
legal_test(protocol)

	Checks if script only contains valid commands






	
run()

	Initiates checking tests










	
class cyckei.explorer.workers.Control(config, channel, command, script=None, temp=False)

	Update json and send “start” function to server


	
run(self) → None

	








	
class cyckei.explorer.workers.Signals

	








Server


Classes that handle controlling Keithley Source objects and enacting protocols on them.








	
class cyckei.server.protocols.AdvanceCycle(wait_time: float = 10.0, cellrunner_parent: cyckei.server.protocols.CellRunner = None)

	Extends ProtocolStep. A step for advancing the cycle number in the parent CellRunner.








	
check_in_control(*args)

	Normally checks that battery is in control.

Since AdvanceCycle doesn’t affect the connected cell True is always returned.


	Returns

	Always returns True.



	Return type

	bool
















	
run(force_report=False)

	Calls the parent CellRunner’s advance_cycle() function.


	Parameters

	force_report (bool, optional) – Forces a printed report if True.
Unused in this case. Defaults to False.




















	
class cyckei.server.protocols.CCCharge(current, reports=(('voltage', 0.01), ('time', ':5:')), ends=(('voltage', '>', 4.2), ('time', '>', '24::')), wait_time=10.0)

	Extends CurrentStep. A step for enforcing a positive current.








	
__init__(current, reports=(('voltage', 0.01), ('time', ':5:')), ends=(('voltage', '>', 4.2), ('time', '>', '24::')), wait_time=10.0)

	Inits state_str, calls the parent CurrentStep constructor with current, ends, reports, and wait_time.


	Parameters

	
	current (float) – The current charge rate being enforced.


	ends (tuple, optional) – A tuple of tuples, holds the voltage cutoff and the total time the protocol should run for in hours:minutes:seconds format.
Defaults to ((“voltage”, “<”, 3), (“time”, “>”, “24::”)).


	reports (tuple, optional) – A tuple of tuples, holds the change in voltage or time for a report to occur, time in in hours:minutes:seconds format.
Defaults to ((“voltage”, 0.01), (“time”, “:5:”)).


	wait_time (float, optional) – Time between data measurements in seconds. Defaults to 10.0.























	
class cyckei.server.protocols.CCDischarge(current, reports=(('voltage', 0.01), ('time', ':5:')), ends=(('voltage', '<', 3), ('time', '>', '24::')), wait_time=10.0)

	Extends CurrentStep. A step for enforcing a negative current.








	
__init__(current, reports=(('voltage', 0.01), ('time', ':5:')), ends=(('voltage', '<', 3), ('time', '>', '24::')), wait_time=10.0)

	Inits state_str, calls the parent CurrentStep constructor with current, ends, reports, and wait_time.


	Parameters

	
	current (float) – The current discharge rate being enforced.


	ends (tuple, optional) – A tuple of tuples, holds the voltage cutoff and the total time the protocol should run for in hours:minutes:seconds format.
Defaults to ((“voltage”, “<”, 3), (“time”, “>”, “24::”)).


	reports (tuple, optional) – A tuple of tuples, holds the change in voltage or time for a report to occur, time in in hours:minutes:seconds format.
Defaults to ((“voltage”, 0.01), (“time”, “:5:”)).


	wait_time (float, optional) – Time between data measurements in seconds. Defaults to 10.0.























	
class cyckei.server.protocols.CVCharge(voltage, reports=(('current', 0.01), ('time', ':5:')), ends=(('current', '<', 0.001), ('time', '>', '24::')), wait_time=10.0)

	Extends VoltageStep. A step for charging at a constant voltage.








	
__init__(voltage, reports=(('current', 0.01), ('time', ':5:')), ends=(('current', '<', 0.001), ('time', '>', '24::')), wait_time=10.0)

	[summary]


	Parameters

	
	ends (tuple, optional) – A tuple of tuples, holds the current cutoff and the total time the protocol should run for in hours:minutes:seconds format.
Defaults to ((“current”, “<”, 0.001), (“time”, “>”, “24::”)).


	reports (tuple, optional) – A tuple of tuples, holds the change in current or time for a report to occur, time in in hours:minutes:seconds format.
Defaults to ((“current”, 0.01), (“time”, “:5:”)).


	voltage (float) – The desired voltage for the cell to reach.


	wait_time (float, optional) – Time between data measurements in seconds. Defaults to 10.0.























	
class cyckei.server.protocols.CVDischarge(voltage, reports=(('current', 0.01), ('time', ':5:')), ends=(('current', '<', 0.001), ('time', '>', '24::')), wait_time=10.0)

	Extends VoltageStep. A step for discharging at a constant voltage.








	
__init__(voltage, reports=(('current', 0.01), ('time', ':5:')), ends=(('current', '<', 0.001), ('time', '>', '24::')), wait_time=10.0)

	Inits state_str, calls Parent Class’ constructor with voltage, reports, ends, and wait_time.


	Parameters

	
	ends (tuple, optional) – A tuple of tuples, holds the current cutoff and the total time the protocol should run for in hours:minutes:seconds format.
Defaults to ((“current”, “<”, 0.001), (“time”, “>”, “24::”)).


	reports (tuple, optional) – A tuple of tuples, holds the change in current or time for a report to occur, time in in hours:minutes:seconds format.
Defaults to ((“current”, 0.01), (“time”, “:5:”)).


	voltage (float) – The desired voltage for the cell to reach.


	wait_time (float, optional) – Time between data measurements in seconds. Defaults to 10.0.























	
class cyckei.server.protocols.CellRunner(plugin_objects=None, **meta)

	Turns a protocol into a list of held ProtocolSteps that are executed to complete the protocol. Also
holds meta information about the protocol being run.


	
channel

	The Keithley channel this protocol should be run on.


	Type

	str










	
current_step

	The active ProtocolStep. UNUSED.


	Type

	ProtocolStep










	
fpath

	The file path to the file that will have data written to it.


	Type

	str










	
i_current_step

	The index of the ProtocolStep being run from the steps list.


	Type

	int










	
isTest

	Controls whether this is a real protocol run or a test protocol being run.


	Type

	bool










	
last_data

	A list of values from the previous measurement recorded in a ProtocolStep.


	Type

	list










	
meta

	Meta data for: channel, path, cellid, comment, package, celltype, requester, plugins,
protocol, protocol_name, cycler, start_cycle, and format.


	Type

	dict










	
_next_time

	The next time at which a ProtocolStep should read data from the Keithley.


	Type

	float










	
plugin_objects

	A list of PluginControllers extending the BaseController object.
(The same as ‘plugins’ and ‘plugin_objects’ in functions of server.py)


	Type

	list










	
prev_cycle

	The previous cycle number. UNUSED.


	Type

	int










	
safety_reset_seconds

	The number of seconds before the Keithley’s safety reset.


	Type

	float










	
source

	The Keithley being controlled by this CellRunner.


	Type

	keithley2602.Source










	
start_time

	The epoch time in seconds at which the CellRunenr started running the protocol (ProtocolSteps).


	Type

	float










	
status

	The status that maps to the STATUS string map. Values -1 to 5.


	Type

	int










	
steps

	A list of the ProtocolSteps to be run in order to complete a protocol.


	Type

	list










	
total_pause_time

	The time in seconds that a ProtoclStep has been paused for.


	Type

	float
















	
__init__(plugin_objects=None, **meta)

	Inits channel, current_step, fpath, i_current_step, last_data, meta, _next_time, plugin_objects,
prev_cycle, safety_reset_seconds, source, start_time, status, steps, and total_pause_time.


	Parameters

	plugin_objects (list, optional) – A list of PluginControllers extending the BaseController object.
(The same as ‘plugins’ and ‘plugin_objects’ in functions of server.py) Defaults to None.
















	
add_step(step)

	Adds a ProtocolStep to the steps list.


	Parameters

	step (ProtocolStep) – ProtocolStep to be added to the steps list.
















	
advance_cycle()

	Advances the cycle stored in CellRunner by 1.












	
close()

	Calls the off() function for the stored source.












	
load_protocol(protocol: str, isTest=False)

	Executes a string of python code to add a step to the steps list.


	Parameters

	protocol (str) – string of python code generating the protocol steps in the runner.
















	
next_step()

	Attempts to move to the next step of the protocol.

Attempts to increment the i_current_step by 1 to move to the next step in the steps list. If the length of steps is
passed then False is returned and status is set to completed to indicate that the prtocol is over. Otherwise, capacity is adjusted
to the last recorded capactiy and true is returned.


	Returns

	True indicates that the next step is ready, False is returned if there are no more steps.



	Return type

	bool
















	
next_time

	Returns the next time to read data.


	Returns

	The next time in seconds at which to read data.



	Return type

	float
















	
off()

	Calls the off() function for the stored source.












	
pause()

	Attempts to pause the active step. Also calls the read_and_write function.


	Returns

	True if the pause was successful, otherwise False.



	Return type

	bool
















	
read_and_write(force_report=False)

	Reads data from the current ProtocolStep and records it.

Calls the current ProtocolStep to collect data and tries to write that data to the data file using write_data().
Also sets the last_data value to this most recently read data.


	Parameters

	force_report (bool, optional) – Passed to the ProtocolStep run() function to control reporting. Defaults to False.
















	
resume()

	Calls resume on the current step. Then calls the run() function.


	Returns

	The result of calling the run() function.



	Return type

	bool
















	
run(force_report=False)

	Starts and advances protocols.

Method called by the main loop to start and advance a protocol
This method triggers the various steps that are loaded in the protocol
as well as the header writing and the data writing in the data file


	Returns

	True if is running as expected, False if it is complete.



	Return type

	bool
















	
set_cap_signs(direction=None)

	Decides whether charging/discharging yields positive or negative capacities.

Go through the steps and set their .cap_sign attribute based on the “direction” of the cell.
Charging yields positive capacities because cap_sign is 1 and discharge yields negative capacities
because cap_sign is -1.


	Parameters

	direction (str or None) – Direction for the cell can be “pos”, “neg”, or None
if it is None, the “celltype” in the meta data is used, if this is not
set it defaults to “pos”.
















	
set_source(source)

	Tries to set the CellRunner’s source (the Keithley it controlls) to the passed in source.


	Parameters

	source (keithley2602.Source) – The Source object used for controlling a specific Keithley.



	Raises

	ValueError – Error raised when the CellRunner does not have the same channel as the Keithley it is controlling.
















	
step

	Uses the index of the current step to pull the current step from the steps list.


	Returns

	The current step that the CellRunner is on.



	Return type

	ProtocolStep
















	
stop()

	Calls the close() function.


	Returns

	Always returns True.



	Return type

	bool
















	
write_cycle_header()

	Writes the cycle that the CellRunner is on to the file stored in fpath.












	
write_data(timestamp, current, voltage, capacity, plugin)

	Attempts to write the passed in data to the fpath file.


	Parameters

	
	capacity (float) – The calculated capacity of the cell being controlled in mAh.


	current (float) – The recorded current data of the controlled cell.


	plugin (list) – A list of values recorded from plugins, either ints or floats.


	timestamp (float) – The recorded time data of the controlled cell.


	voltage (float) – The recorded voltage data of the controlled cell.



















	
write_header()

	Creates a JSON string using the CellRunner meta and writes it to the file stored in fpath.












	
write_step_header()

	Collects the header from the current ProtocolStep and writes it to the file stored in fpath.
















	
class cyckei.server.protocols.Condition

	A Condition is an abstract class. A Condition takes a ProtocolStep into its check() method,
and returns a boolean indicating whether that condition has been met.

A condition object may modify the .next_time attribute of
the ProtocolStep object to suggest time the
next time as an absolute timestamp that the condition should be checked








	
check(protocol_step: cyckei.server.protocols.ProtocolStep)

	Abstract Function that checks whether certain conditions are met and
returns a bool.


	Parameters

	protocol_step (ProtocolStep) – The step being checked on whether it has met
the condition.



	Raises

	NotImplementedError – Raises this by default since check is an Abstract Method.




















	
class cyckei.server.protocols.ConditionAbsolute(value_str: str, operator_str: str, value: float, min_time: float = 1.0)

	An object for comparing the most recent measurement of a ProtocolStep to a user designated value.


	
comparison

	The comparison func to use when comparing values i.e. greater than, less than, etc.


	Type

	func










	
index

	The index that relates to the value string in the data lists from Steps.


	Type

	int










	
min_time

	Minimum time that must have elapsed before evaluating the condition.


	Type

	float










	
next_time

	The next expected time for data to be checked. NEVER USED. Defaults to infinity.


	Type

	float










	
value

	Actual value to compare against step data.


	Type

	float










	
value_str

	Value string such as “voltage”, “time”, “current” etc… See DATA_INDEX_MAP module variable for valid values.


	Type

	str
















	
__init__(value_str: str, operator_str: str, value: float, min_time: float = 1.0)

	Inits with comparison, index, min_time, next_time, value, and value_str.


	Parameters

	
	value_str (str) – Value string such as “voltage”, “time”, “current” etc… See DATA_INDEX_MAP module variable for valid values.


	operator_str (str) – String indicating the comparison operator. See OPERATOR_MAP module variable for valid values.


	value (float) – Actual value to compare against step data.


	min_time (float) – Minimum time that must have elapsed before evaluating the condition.



















	
check(step)

	Compares absolute set value to step data.

First checks to see if enough time has passed between the most recent report and the newest data. If enough
time has passed then the newest data value is compared against the set value.


	Parameters

	step (ProtocolStep) – The step to have data pulled from its data list.



	Returns

	True if the end condition was satisfied, otherwise False



	Return type

	bool




















	
class cyckei.server.protocols.ConditionDelta(value_str: str, delta: float)

	Condition that checks change between latest reported value and latest measured value.


	
comparison

	An operator function that performs comparisons, in this case it is greater than or equal to, since the comparison is change in value.


	Type

	func










	
delta

	Delta to compare step data against.


	Type

	float










	
index

	The integer that maps to a constant data map referencing data type being compared.


	Type

	int










	
is_time

	True means that this condition compares time values. False means it does not.


	Type

	bool










	
value_str

	Value string such as “voltage”, “time”, “current” etc… See DATA_INDEX_MAP module variable for valid values.


	Type

	str
















	
__init__(value_str: str, delta: float)

	Inits with comparison, delta, index, and is_time, and value_str.


	Parameters

	
	value_str (str) – Value string such as “voltage”, “time”, “current” etc… See DATA_INDEX_MAP module variable for valid values.


	delta (float) – Delta to compare step data against.



















	
check(step)

	Checks the provided step’s value against the delta value.

Takes the most recent list of readings from the data list in step and indexes into the matching value to compare against delta.


	Parameters

	step (ProtocolStep) – The step to have data pulled from its data list.



	Returns

	True if the end condition was satisfied, otherwise False



	Return type

	bool




















	
class cyckei.server.protocols.ConditionTotalDelta(value_str: str, delta: float)

	Object for checking the change between the first reported value and latest measured value of a step.


	
comparison

	An operator function that performs comparisons, in this case it is greater than or equal to, since the comparison is change in value.


	Type

	func










	
delta

	Delta to compare step data against.


	Type

	float










	
index

	The integer that maps to a constant data map referencing data type being compared.


	Type

	int










	
next_time

	At what timestamp do we expect the condition to be met. Defaults as infinite.


	Type

	float










	
value_str

	Value string such as “voltage”, “time”, “current” etc… See DATA_INDEX_MAP module variable for valid values.


	Type

	str
















	
__init__(value_str: str, delta: float)

	Inits with comparison, delta, index, next_time, and value_str.


	Parameters

	
	value_str (str) – Value string such as “voltage”, “time”, “current” etc… See DATA_INDEX_MAP module variable for valid values.


	delta (float) – Delta to compare step data against.



















	
check(step)

	Checks the provided step’s value against the delta value.

Takes the first list of readings from the data list in step and indexes into the matching value to compare against delta.


	Parameters

	step (ProtocolStep) – The step to have data pulled from its data list.



	Returns

	True if the end condition was satisfied, otherwise False.



	Return type

	bool




















	
class cyckei.server.protocols.ConditionTotalTime(delta)

	Object for checking the change between the first reported time and latest measured time of a step.

Extends ConditionTotalDelta and simply calls its parent class’ constructor with time as the value_str.








	
__init__(delta)

	Calls the parent class’ constructor to make a ConditionTotalDelta with time.


	Parameters

	delta (float) – Total elapsed time in seconds.
















	
check(step)

	Checks the provided step’s value against the delta value.

Takes the first list of readings from the data list in step and indexes into the matching value to compare against delta.


	Parameters

	step (ProtocolStep) – The step to have data pulled from its data list.



	Returns

	True if the end condition was satisfied, otherwise False.



	Return type

	bool




















	
class cyckei.server.protocols.CurrentStep(current, reports=(('voltage', 0.01), ('time', ':5:')), ends=(('voltage', '>', 4.2), ('time', '>', '24::')), wait_time=10.0)

	Extends ProtocolStep. A step for controlling the current output by the source (i.e Keithley).


	
current

	The current rate being enforced.


	Type

	float










	
v_limit

	Voltage limit for source. This is not a voltage cutoff condition.
It is the maximum voltage allowed by the Keithley under any
condition. The Keithley enforces +/- v_limit.
Having a battery with a voltage outside of +/- v_limit could
damage the Keithley. Defaults to 5.0.


	Type

	float
















	
__init__(current, reports=(('voltage', 0.01), ('time', ':5:')), ends=(('voltage', '>', 4.2), ('time', '>', '24::')), wait_time=10.0)

	Inits current, end_conditions, report_conditions, state_str, and v_limit. Calls parent ProtocolStep constructor with wait_time.


	Parameters

	
	current (float) – The current rate being enforced.


	ends (tuple, optional) – A tuple of tuples, holds the voltage cutoff and the total time the protocol should run for in hours:minutes:seconds format.
Defaults to ((“voltage”, “>”, 4.2), (“time”, “>”, “24::”)).


	reports (tuple, optional) – A tuple of tuples, holds the change in voltage or time for a report to occur, time in in hours:minutes:seconds format.
Defaults to ((“voltage”, 0.01), (“time”, “:5:”)).


	wait_time (float, optional) – Time between data measurements in seconds. Defaults to 10.0.






	Raises

	ValueError – Current should not be 0 during a CurrentStep, this is raised if current is 0.
















	
check_in_control(last_time, current, voltage)

	Method for checking if the desired condition is actually met.

Returning False will completely kill the cell.


	Parameters

	
	current (float) – The current rate being enforced.


	last_time (float) – The measured time in seconds. UNUSED


	voltage (float) – The measured voltage to be compared against this step’s set voltage. UNUSED






	Returns

	True if cell is in control, False otherwise



	Return type

	bool
















	
header()

	Returns the current state and time in json form.


	Returns

	A JSON string of the current protocol state and time.



	Return type

	JSON




















	
class cyckei.server.protocols.Pause

	Extends ProtocolStep. Pauses the CellRunner and its Keithley source.








	
__init__()

	Inits state_str and invokes the parent’s constructor with infinite wait time.












	
check_in_control(*args)

	When a everything is paused in_control means nothing, hence this function does nothing but return True.


	Returns

	Always returns True



	Return type

	bool
















	
resume()

	Sets the Pause step’s status to completed in order to move on from being paused.












	
run()

	Calls the Pause start() function.


	Returns

	None returned.



	Return type

	None




















	
class cyckei.server.protocols.ProtocolStep(wait_time: float = 10.0, cellrunner_parent: cyckei.server.protocols.CellRunner = None)

	Base class for a protocol step, needs to be subclassed with implementation of a start function.

A protocol step stores its own data and the reported points
Keeps track of time, current, voltage, capacity. Because the protocol files are simply pure
python the parent, which is a CellRunner instance, needs to be present in the global
variables as “parent”.


	
cap_sign

	The cap sign determines whether the capacitiy increases or decreases during
charge and discharge. Either 1 or -1.


	Type

	float










	
data

	A list of lists. Each list is a set of measurements, [[time,current,voltage,capacity],
[time,current,voltage,capacity], …] current is stored in absolute value. Contains every measurement taken.


	Type

	list










	
data_max_len

	The max number ofitems in the data list.


	Type

	int










	
end_conditions

	A list of conditions that determine when the ProtocolStep should be ended.


	Type

	list










	
in_control

	Indicates if the protocol step is operating within it’s designed parameters.


	Type

	bool










	
last_time

	The previous measured time in seconds.


	Type

	float










	
next_time

	This is the time in seconds since epoch at which this protocol step is expecting to do another read
operation on the channel. -1 means it has never been set.


	Type

	float










	
parent

	The CellRunner holding this protocol step.


	Type

	CellRunner










	
pause_start

	The time in seconds at which the protocol was paused.


	Type

	float










	
pause_time

	The total time in seconds for which the protocol was paused.


	Type

	float










	
report

	A list of lists. Each list is a set of measurements, [[time,current,voltage,capacity],
[time,current,voltage,capacity], …]. This list only contains measurements taken that are
specified to be reported.


	Type

	list










	
report_conditions

	A list of Condition objects used to determine when a data measurement is reported.


	Type

	list










	
starting_capacity

	The initital capacity of the cell. This gets set at the protocol level (parent).


	Type

	float










	
state_str

	A string representation of the state of the cell i.e charging, discharging, etc.


	Type

	str










	
status

	An int representation of the status of the step, i.e started, paused, etc.


	Type

	int










	
wait_time

	Time between data measurements in seconds.


	Type

	float
















	
__init__(wait_time: float = 10.0, cellrunner_parent: cyckei.server.protocols.CellRunner = None)

	Inits ProtocolStep with parent, data_max_len, status, state_str, last_time, pause_start, pause_time, cap_sign, next_time,  starting_capacity,
wait_time, end_conditions, report_conditions, in_control.

Base class for protocols the variable “parent” must be a CellRunner
instance and be present in the globals during instantiation.


	Parameters

	
	cellrunner_parent (CellRunner) – The CellRunner this protocol is attached to.


	wait_time (float) – Default waiting time in seconds.
If no other conditions are met, the step will check V & I at this interval.



















	
check_end_conditions()

	Checks if it’s time for step to be ended.


	Returns

	True if the end condition was satisfied, otherwise False



	Return type

	bool
















	
check_in_control(last_time, current, voltage)

	Abstract Method for checking if the desired condition is actually met.


	For example

	
	constant current : check current is correct


	constant voltage: check voltage is correct









	Parameters

	
	current (float) – Current in amps. NOTE THAT THIS IS NOT ABSOLUTE CURRENT
IT IS THE CURRENT DIRECTLY REPORTED FROM THE INSTRUMENT.


	last_time (float) – Timestamp of last measurement.


	voltage (float) – Voltage in volts.






	Raises

	NotImplementedError – Raises immediately as this is an Abstract Method.
















	
check_report_conditions()

	Check if it’s time for step info to be reported.


	Returns

	True if the end condition was satisfied, otherwise False



	Return type

	bool
















	
header()

	Unimplemented function. Meant for being overridden.


	Returns

	Always returns False.



	Return type

	bool
















	
pause()

	If step is started turns the source off and sets the status to paused.


	Returns

	Returns False if the step hasn’t been started. Otherwise True.



	Return type

	bool
















	
read_data(force_report=False)

	Reads and reports data from the Keithley source.

Reads data from the Keithley source. Next scans the list of plugins checking for active ones. If there are active
plugins their read() function is called and the output is checked. int and float are acceptable return values from the plugins.
A 0 will replace non int or non float values. If data has been previously reported that data is used to calculate current capacity,
otherwise capacity is the starting capacity. The read values of last_time, current, voltage, capacity, plugin_values are then compiled
into a list and appended to the data list. If the data list is oversized its second to last oldest value is popped from the list
(removing the first value would mess up calculating total changes). Finally the data is added to the end of the report if force_report is true.


	Parameters

	force_report (bool, optional) – If True then the collected data is added to the report list. Defaults to False.
















	
resume()

	Resumes the step by calling _start(), also calculates pause time.


	Returns

	Returns True if the step hasn’t been paused.



	Return type

	bool
















	
run(force_report=False)

	Calls the read_data() function, also decides if the read data should be reported.


Calls the read_data() function and checks the end_conditions for if the ProtocolStep should end.
The run function evaluates the report_conditions to decide if a data point should be reported,
setting force_report to True will report the latest data point regardless of conditions.





	Parameters

	force_report (bool) – Defaults to False. Forces a report if True.



	Returns

	
	(time, current, voltage, capacity) tuple to report (write to file).

	Returns none if no data to report.









	Return type

	tuple




















	
class cyckei.server.protocols.Rest(reports=(('time', ':5:'), ), ends=(('time', '>', '24::'), ), wait_time=10.0)

	Extends ProtocolStep. A step for putting a the CellRunner and Keithley to rest.








	
__init__(reports=(('time', ':5:'), ), ends=(('time', '>', '24::'), ), wait_time=10.0)

	Inits end_conditions, report_conditions, and state_str.


	Parameters

	
	ends (tuple, optional) – The total time the protocol should run for in hours:minutes:seconds format. Defaults to ((“time”, “>”, “24::”),).


	reports (tuple, optional) – The time betweem reports in hours:minutes:seconds format. Defaults to ((“time”, “:5:”),).


	wait_time (float, optional) – Time between data measurements in seconds. Defaults to 10.0.



















	
check_in_control(last_time, current, voltage)

	Method for checking if the desired condition is actually met.

Compares the given current to 0.00001 to check if it is essentially 0. Sets in_control, the return value,
to True if the current is essentially 0. Returning False will completely kill the cell.


	Parameters

	
	current (float) – The measured current to compare to 0.00001.


	last_time (float) – The last measurement time, UNUSED.


	voltage (float) – The measured voltage of the cell, UNUSED.






	Returns

	True if cell is in control, False otherwise.



	Return type

	bool
















	
header()

	Returns the current state and time in json form.


	Returns

	A JSON string of the current protocol state and time.



	Return type

	JSON




















	
class cyckei.server.protocols.Sleep(reports=(('time', ':5:'), ), ends=(('time', '>', '24::'), ), wait_time=10.0)

	Extends ProtocolStep. A protocol used for putting the CellRunner and Keithley to sleep.








	
__init__(reports=(('time', ':5:'), ), ends=(('time', '>', '24::'), ), wait_time=10.0)

	Inits end_conditions, report_conditions, and state_str.


	Parameters

	
	ends (tuple, optional) – The total time the protocol should run for in hours:minutes:seconds format. Defaults to ((“time”, “>”, “24::”),).


	reports (tuple, optional) – The time betweem reports in hours:minutes:seconds format. Defaults to ((“time”, “:5:”),).


	wait_time (float, optional) – Time between data measurements in seconds. Defaults to 10.0.



















	
check_in_control(last_time, current, voltage)

	Method for checking if the desired condition is actually met.

Returning False will completely kill the cell


	Parameters

	
	() (voltage) – 


	() – 


	() – 






	Returns

	True if cell is in control, False otherwise



	Return type

	bool
















	
header()

	Returns the current state and time in json form.


	Returns

	A JSON string of the current protocol state and time.



	Return type

	JSON
















	
read_data()

	Reads the data from the Keithley source by calling the parent class’ read_data().












	
run(force_report=False)

	Calls the start function of the sleep protocol, checks end conditions, and reports data.

The run method needs to be redefined because the logic of the Sleep
protocol is unique in that a measurement is only desired if a report condition is met as opposed to
the other steps which measure and then decide whether to report


	Parameters

	force_report (bool) – Defaults to False. The run function evaluates the
report_conditions to decide if a data point should be
reported, setting force_report to True will report the
latest data point regardless of conditions.



	Returns

	
	(time, current, voltage, capacity) tuple to report (write to file).

	Returns none if no data to report.









	Return type

	tuple




















	
class cyckei.server.protocols.VoltageStep(voltage, reports=(('current', 0.01), ('time', ':5:')), ends=(('current', '<', 0.001), ('time', '>', '24::')), wait_time=10.0)

	Extends ProtocolStep. A step for controlling the voltage of a cell.


	
i_limit

	The maximum allowed current when charging or discharing.


	Type

	float










	
voltage

	The desired voltage for the cell to reach.


	Type

	float
















	
__init__(voltage, reports=(('current', 0.01), ('time', ':5:')), ends=(('current', '<', 0.001), ('time', '>', '24::')), wait_time=10.0)

	Inits i_limit, end_conditions, report_conditions, and voltage.


	Parameters

	
	ends (tuple, optional) – A tuple of tuples, holds the current cutoff and the total time the protocol should run for in hours:minutes:seconds format.
Defaults to ((“current”, “<”, 0.001), (“time”, “>”, “24::”)).


	reports (tuple, optional) – A tuple of tuples, holds the change in current or time for a report to occur, time in in hours:minutes:seconds format.
Defaults to ((“current”, 0.01), (“time”, “:5:”)).


	voltage (float) – The desired voltage for the cell to reach.


	wait_time (float, optional) – Time between data measurements in seconds. Defaults to 10.0.



















	
check_in_control(last_time, current, voltage)

	Method for checking if the desired condition is actually met.

Voltage can take a moment to stabalize when a cell is first started, so the tolerance is adjusted accordingly. Otherwise,
The currently measured voltage is compared against the voltage set in this step and if it is too different the in_control value
is set to False. in_control is then returned. Returning False will completely kill the cell.


	Parameters

	
	current (float) – The measured current. UNUSED.


	last_time (float) – The measured time in seconds.


	voltage (float) – The measured voltage to be compared against this step’s set voltage.






	Returns

	True if cell is in control, False otherwise



	Return type

	bool
















	
guess_i_limit()

	Takes the last value in the CellRunner Parent’s Keithley’s current_ranges and sets it positive
or negative depending on charge or discharge.












	
header()

	Returns the current state and time in json form.


	Returns

	A JSON string of the current protocol state and time.



	Return type

	JSON




















	
cyckei.server.protocols.condition_dc(dc)

	Function for creating a ConditionDelta object using capacity.


	Parameters

	dc (float) – The change in capacity.



	Returns

	A Condition that can be used on steps to compare changes in capacity.



	Return type

	ConditionDelta
















	
cyckei.server.protocols.condition_di(di)

	Function for creating a ConditionDelta object using current.


	Parameters

	di (float) – The change in current.



	Returns

	A Condition that can be used on steps to compare changes in current.



	Return type

	ConditionDelta
















	
cyckei.server.protocols.condition_dt(dt)

	Function for creating a ConditionDelta object using time.


	Parameters

	dt (float) – The change in time in seconds.



	Returns

	A Condition that can be used on steps to compare changes in time.



	Return type

	ConditionDelta
















	
cyckei.server.protocols.condition_dv(dv)

	Function for creating a ConditionDelta object using voltage.


	Parameters

	dv (float) – The change in voltage.



	Returns

	A Condition that can be used on steps to compare changes in voltage.



	Return type

	ConditionDelta
















	
cyckei.server.protocols.condition_end_voltage(voltage, operator_str)

	Function for creating a ConditionAbsolute object using a voltage endpoint.

Loads a ConditionAbsolute object with a comparison voltage and the mathematical
comparison operator to use.


	Parameters

	
	voltage (float) – The voltage to initialize ConditionAbsolute with.


	operator_str (str) – A string representing a mathematical operator i.e. ><= .






	Returns

	Initialized with the given voltage and operator_str.



	Return type

	ConditionAbsolute
















	
cyckei.server.protocols.condition_lcv(voltage)

	Function for creating a ConditionAbsolute object using a lower cutoff voltage.


	Parameters

	voltage (float) – The voltage to initialize ConditionAbsolute with.



	Returns

	Initialized with the given voltage and <= as the operator.



	Return type

	ConditionAbsolute
















	
cyckei.server.protocols.condition_max_current(current)

	Function for creating a ConditionAbsolute object using a max current.


	Parameters

	current (float) – The current to initialize ConditionAbsolute with.



	Returns

	Initialized with the given current and >= as the operator.



	Return type

	ConditionAbsolute
















	
cyckei.server.protocols.condition_min_current(current)

	Function for creating a ConditionAbsolute object using a min current.


	Parameters

	current (float) – The current to initialize ConditionAbsolute with.



	Returns

	Initialized with the given current and <= as the operator.



	Return type

	ConditionAbsolute
















	
cyckei.server.protocols.condition_total_time(total_time)

	Function for creating a ConditionTotalTime object for a total time condition.


	Parameters

	total_time (float) – The total_time to be used in the ConditionTotalTime.



	Returns

	Initialized with the given total_time.



	Return type

	ConditionTotalTime
















	
cyckei.server.protocols.condition_ucv(voltage)

	Function for creating a ConditionAbsolute object using an upper cutoff voltage.


	Parameters

	voltage (float) – The voltage to initialize ConditionAbsolute with.



	Returns

	Initialized with the given voltage and >= as the operator.



	Return type

	ConditionAbsolute
















	
cyckei.server.protocols.extrapolate_time(data, target, index)

	Estimates the time until a voltage cutoff is reached.


	Parameters

	
	data (list) – A list of lists of measurements taken (voltages, currents, times) at each time.


	target (float) – The target voltage being extrapolated to.


	index (int) – Which of the values being tested against i.e. [0:self.last_time, 1:current,
2:voltage, 3:capacity, 4:plugin_values]






	Returns

	The time at which the target will be hit.



	Return type

	float
















	
cyckei.server.protocols.process_ends(ends)

	Takes end_conditions in tuple form and converts them into Condition objects.


	Parameters

	ends (((str, str, float), (str, str, str))) – Desired ends conditions as a tuple of triples such as
((“voltage”,”>”, 4.2), (“time”,”>”,”24::”)).



	Returns

	List of Condition objects for ending a protocol step.



	Return type

	list
















	
cyckei.server.protocols.process_reports(reports)

	Takes reports in the form of a tuple of pairs and creates a list of Condition objects for when to report.


	Parameters

	reports (((str, float), (str, int))) – Desired reports as a tuple of pairs such as
((“voltage”,0.01), (“time”,300))



	Returns

	List of condition objects for reporting a data point



	Return type

	list
















	
cyckei.server.protocols.time_conversion(t)

	Converts time in the “hh:mm:ss” format to seconds as a float.


	Parameters

	t (str or float) – time in the “hh:mm:ss” format, where values can be ommitted
e.g. “::5” would be five seconds or time in seconds.



	Returns

	Calculated time in Seconds.



	Return type

	float















Main script run by server application


	
cyckei.server.server.event_loop(config, socket, plugins, plugin_names, device_module)

	Main start method and loop for server application.

Connects cycling channels, sets up CellRunners for controlling channels,
waits for runners then processes and discards them as necessary. Also records
the channel statuses.


	Parameters

	
	config (dict) – Holds Cyckei launch settings.


	device_module (module) – A module (in this case keithley.py) that includes a definition for DeviceController(gpib_addr (int) ).


	plugins (list) – A list of PluginControllers extending the BaseController object.


	plugin_names (dict) – A dict with a key of the plugin name and a value of the of the specific plugin instance’s name.


	socket (zmq.Socket) – An object that acts as a socket that can send and receive messages.



















	
cyckei.server.server.get_runner_by_channel(channel, runners, status=None)

	Get runner currently on given channel.


	Parameters

	
	channel (int or str) – The channel number associated with the desired Keithley.


	runners (list) – A sorted list of active CellRunner objects.


	status (int, optional) – The status number associated with different runner statuses. -1 to 5. Defaults to None.






	Returns

	Returns the runner serving the given channel, returns None otherwise.



	Return type

	CellRunnner
















	
cyckei.server.server.info_all_channels(runners, sources)

	Return info on all channels


	Parameters

	
	runners (list) – A sorted list of active CellRunner objects.


	sources (list) – A list of all of the Keithley channels connected to the server.






	Returns

	A dictionary of dictionaries that each hold info from their respective
CellRunner’s meta, e.g. path, status, current, voltage, etc.



	Return type

	dict
















	
cyckei.server.server.info_channel(channel, runners, sources)

	Return info about the specified channel.


	Parameters

	
	channel (int) – The channel number associated with the desired Keithley.


	runners (list) – A sorted list of active CellRunner objects.


	sources (list) – A list of all of the Keithley channels connected to the server.






	Returns

	Information about the requested channel from the CellRunner’s
meta, e.g. path, status, current, voltage, etc.



	Return type

	dict
















	
cyckei.server.server.info_server_file(config)

	Return the dict of channels in the server file


	Parameters

	config (dict) – Holds Cyckei launch settings.



	Returns

	The json data of channels recorded in a file, converted to a dict.



	Return type

	dict
















	
cyckei.server.server.main(config, plugins, plugin_names)

	Begins execution of Cyckei Server.

Sets up the socket for communication with a client and starts the event_loop to
process commands.


	Parameters

	
	config (dict) – Holds Cyckei launch settings.


	plugins (list) – A list of PluginControllers extending the BaseController object.


	plugin_names (dict) – A dict with a key of the plugin name and a value of the of the specific plugin instance’s name.



















	
cyckei.server.server.pause(channel, runners)

	Pauses the specified channel.


	Parameters

	
	channel (int) – The channel number associated with the desired Keithley.


	runners (list) – A sorted list of active CellRunner objects.






	Returns

	The result message of trying to pause a channel.



	Return type

	str
















	
cyckei.server.server.process_socket(config, socket, runners, sources, server_time, plugins, plugin_names)

	Checks the running socket for messages and then parses them into actions to take.


	Parameters

	
	config (dict) – Holds Cyckei launch settings.


	plugins (list) – A list of PluginControllers extending the BaseController object.


	plugin_names (dict) – A dict with a key of the plugin name and a value of the of the specific plugin instance’s name.


	runners (list) – A sorted list of active CellRunner objects.


	server_time (float) – The time on the server (unused in the function)


	socket (zmq.REP socket) – Receives messages in a non-blocking way.
If a message is received it processes it and sends a response


	sources (list) – A list of all of the Keithley channels connected to the server.



















	
cyckei.server.server.record_data(data_path, data)

	Saves server status to a file.

Uses the data_path to open an existing or new file, converts the data to a json,
then writes the data to the file. If there is already existing data in channels
it is not overwritten by the same channels now being empty.


	Parameters

	
	data (dict) – The data to be stored in a file.


	data_path (str) – The path to the area where the user wants the server_data file stored.



















	
cyckei.server.server.resume(channel, runners)

	Attempts to resume the specified channel from pause.


	Parameters

	
	channel (int) – The channel number associated with the desired Keithley.


	runners (list) – A sorted list of active CellRunner objects.






	Returns

	The result message of trying to resume a channel.



	Return type

	str
















	
cyckei.server.server.start(channel, meta, protocol, runners, sources, plugin_objects)

	Start channel with given protocol.


	Parameters

	
	channel (int) – The channel number associated with the desired Keithley.


	meta (dict) – The metadata about a channel, which is provided to the CellRunner.


	plugin_objects (list) – A list of PluginControllers extending the BaseController object. (The same as ‘plugins’ in other functions of server.py)


	protocol (str) – The protocol to be loaded onto a CellRunner.


	runners (list) – A sorted list of active CellRunner objects.


	sources (list) – A list of all of the Keithley channels connected to the server.






	Returns

	The result message of trying to start a channel.



	Return type

	str
















	
cyckei.server.server.stop(channel, runners)

	Stop the specified channel.


	Parameters

	
	channel (int) – The channel number associated with the desired Keithley.


	runners (list) – A sorted list of active CellRunner objects.






	Returns

	The result message of trying to strop a channel.



	Return type

	str
















	
cyckei.server.server.test(protocol)

	Test the specified protocol for compliance.


	Parameters

	() (protocol) – 



	Returns

	The result message of testing the protocol.



	Return type

	str















Classes to handle interfacing with Keithleys and their channels


	
class cyckei.server.keithley2602.DeviceController(gpib_addr, load_scripts=True, safety_reset_seconds=120)

	Represents a single keithley Interface


	
gpib_addr

	Either the int part of the GPIB address or the full
GPIB address as a str.


	Type

	int or str










	
safety_reset_seconds

	How many seconds the Keithley can go without being
checked before being shut off.


	Type

	int










	
source_meter

	The Keithley connected using pyvisa.


	Type

	visa GPIBInstrument
















	
__init__(gpib_addr, load_scripts=True, safety_reset_seconds=120)

	Inits Device Controller with gpib_addr, safety_reset_seconds, and
source_meter.

Also resets the source meter and initializes it with either a startup
scrip or a safety shut off script.


	Parameters

	
	gpib_addr (int or str) – Either the int part of the GPIB address or the full
GPIB address as a str.


	load_scripts (bool, optional) – Defaults to True. Whether the source should be
able to load scripts.


	safety_reset_seconds (int, optional) – How many seconds the Keithley can go without being
checked before being shut off.



















	
get_source(kch, channel=None)

	Creates a source object of a Keithley with the specified kch channel.


	Parameters

	
	kch (str) – ‘a’ or ‘b’, used to set whether a or b on the keithley is used.


	channel (str, optional) – User specified name of the channel. Defaults to None






	Returns

	Initialized with source_meter, kch, channl, and safety_reset_seconds.



	Return type

	Source




















	
class cyckei.server.keithley2602.Source(source_meter, kch, channel=None, safety_reset_seconds=120)

	Represents an individual source.

Typically generated from a Keithley object’s get_source function


	
channel

	Channel name that the user sees. Will be used to sort and
display channels. Defaults to None.


	Type

	str










	
chd

	Holds the connection between kch and snum, {“a”:1, “b”:2}.


	Type

	dict










	
data

	The backlog of data being stored; holds timestamp, current, and voltage.


	Type

	list










	
data_max_len

	Defaults to 500. The legnth of the backlog of data being stored.


	Type

	int










	
identification

	Either ‘smua’ or ‘smub’, corresponds with whether the kch is ‘a’ or ‘b’.


	Type

	str










	
kch

	Keithley channel (“a” or “b”). Stored lower case internally
and accessible in the kch attribute.


	Type

	str










	
report

	List of points from data list added whenever a condition is met.


	Type

	list










	
safety_reset_seconds

	How many seconds the Keithley can go without being
checked before being shut off.


	Type

	int










	
source_meter

	The Keithley source, btained from an open_resource pyvisa call.


	Type

	visa GPIBInstrument










	
snum

	Either 1 or 2, corresponds with whether the kch is ‘a’ or ‘b’.


	Type

	int
















	
__init__(source_meter, kch, channel=None, safety_reset_seconds=120)

	Constructs necessary parameters for a Source object.


	Parameters

	
	channel (int or str) – Channel that the user sees. Can be integer or string,
however will be used to sort and display channels. Defaults to None.


	kch (str) – Keithley channel (“a” or “b”). Stored lower case internally and accessible in the kch attribute.


	source_meter (visa GPIBInstrument) – The Keithley source, btained from an open_resource pyvisa call.



















	
get_range(current)

	Compares the current_range to the provided current and returns the
smallest number in the range still larger than the provided current.


	Parameters

	current (int) – Current to compare to the current_range



	Returns

	
	The smallest current in the current_range still larger than the

	provided current.









	Return type

	int
















	
off()

	Stops the protocol on the Keithley and sets the Keithley to off-mode.












	
pause()

	Attempts to pause the Keithley script by writing abort to the Keithley
and changing the output.












	
query(*args, **kwargs)

	Makes a call to query the Keithley source.












	
read_data(*args, **kwargs)

	Shuts the Keithely off after {safety_reset_seconds} if the Keithley is
not checked in that time.


	Returns

	The result of the function that is being called through here. Could return anything.



	Return type

	Any
















	
read_iv(*args, **kwargs)

	Shuts the Keithely off after {safety_reset_seconds} if the Keithley is
not checked in that time.


	Returns

	The result of the function that is being called through here. Could return anything.



	Return type

	Any
















	
read_until(write_conditions, end_conditions, wait_time=5.0)

	Records data from a Keithley at regular intervals until an end condition is met.


	Parameters

	
	end_conditions (list) – A list of Conditions from protocols.py to be checked
against to end the process.


	wait_time (int, optional) – Time in seconds between checks. Defaults to 5.


	write_conditions (list) – A list of Conditions from protocols.py to be checked
against determining whether to write data.



















	
rest(*args, **kwargs)

	Shuts the Keithely off after {safety_reset_seconds} if the Keithley is
not checked in that time.


	Returns

	The result of the function that is being called through here. Could return anything.



	Return type

	Any
















	
set_current(*args, **kwargs)

	Shuts the Keithely off after {safety_reset_seconds} if the Keithley is
not checked in that time.


	Returns

	The result of the function that is being called through here. Could return anything.



	Return type

	Any
















	
set_text(text1: str = '', text2: str = '')

	Sets the display test on the Keithley screen

Unfortunately the Keithley does not treat the two channels
independently for display purposes. So setting the text for one
channels removes all the info for the other channel rendering this
functionality nearly useless.


	Parameters

	
	text1 (str) – top line of text, 10 max chars


	text2 (str) – bottom line of text, 16 max chars



















	
set_voltage(*args, **kwargs)

	Shuts the Keithely off after {safety_reset_seconds} if the Keithley is
not checked in that time.


	Returns

	The result of the function that is being called through here. Could return anything.



	Return type

	Any
















	
write(*args, **kwargs)

	Makes a call to write the included arguments to the Keithley source.
















	
cyckei.server.keithley2602.parse_gpib_address(gpib_address)

	Takes int or str and returns full str GPIB address


	Parameters

	gpib_address (int or str) – Either the int part of the GPIB address or the full
GPIB address as a str.



	Returns

	The full GPIB address.



	Return type

	str
















	
cyckei.server.keithley2602.with_safety(fn)

	Wrapper function for the Source class to enforce the use of a safety script

Safety cutoff will shut the keithley off after {safety_reset_seconds}
if it is not at least checked.


	Parameters

	fn (funtion) – The function being decorate for safety cutoff.



	Returns

	The result of the function that is being called through here. Could return anything.



	Return type

	Any




















Functions



	
cyckei.functions.func.asset_path(path)

	Appends a given path to the end of the path to the assests folder.


	Parameters

	path (str) – The path starting from the assests folder.



	Raises

	FileNotFoundError – Error is raised when the given path doesn’t point to an existing folder or file.



	Returns

	the input path appended to the assests folder path.



	Return type

	str
















	
cyckei.functions.func.not_none(value)

	Sets a None value to “None” string


	Parameters

	value (None) – Expects a None, but able to handle anything convertabile to a str.



	Returns

	Returns “None” as a string or converts the given value to a string and returns it.



	Return type

	str















Universal GUI Functions








	
cyckei.functions.gui.action(text=None, connect=None, tip=None, parent=None, disabled=False, separator=False)

	Creates an “action” that can be linked to the other ui elements in order to perform functions.

Uses the QAction object to implement this functionality.


	Parameters

	
	text (str, optional) – The descriptive text displayed by the action. Defaults to None.


	connect (func, optional) – The function that is called when the action is triggered. Defaults to None.


	tip (str, optional) – The status tip is displayed on all status bars provided by the action’s top-level parent. Defaults to None.


	parent (QObject, optional) – If parent is an action group the action will be automatically inserted into the group. Defaults to None.


	disabled (bool, optional) – Whether the action is disabled or not, True means the action is inactive (disabled). Defaults to False.


	separator (bool, optional) – True makes this action a separator, an action that physically separates other actions in the GUI. Defaults to False.






	Returns

	The action object that can be connected to the other gui elements.



	Return type

	QAction
















	
cyckei.functions.gui.button(text=None, status=None, connect=None, enabled=True)

	Creates a QPushButton with given information.


	Parameters

	
	text (str, optional) – The text on the button. Defaults to None.


	status (str, optional) – The text of the status tip that appears when the cursor hovers over the button. Defaults to None.


	connect (func, optional) – The function to connect to pushing the button. Defaults to None.


	enabled (bool, optional) – Whether the button is enabled or not. False is Disabled. Defaults to True.






	Returns

	A button with the specified features.



	Return type

	QPushButton
















	
cyckei.functions.gui.combo_box(items, status, key, connect)

	Creates a QComboBox with given information. Essentially creates a dropdown selector.

This is a combo box that is connected to a specified function.


	Parameters

	
	items (list) – Adds a list of strings as selectable items to the dropdown.


	status (str) – The text of the status tip that appears when the cursor hovers over the button.


	key – The parameter that will be needed by the connected function (connect).


	connect (func) – The function to connect to selecting an item in the dropdown window.






	Returns

	A combined button and popup list with the specified features.



	Return type

	QComboBox
















	
cyckei.functions.gui.feedback(status, channel)

	Changes the text in the feedback label object in the provided channel.


	Parameters

	
	status (str) – The string to be diplayed as the status of the channel.


	channel (ChannelWidget) – The channel to have its feedback label edited.



















	
cyckei.functions.gui.label(text, status=None, tag=None)

	Creates a QLabel for your QApplication.


	Parameters

	
	text (str) – Sets the text of the QLabel


	status (str, optional) – The text of the status tip that appears when the cursor hovers over the label. Defaults to None.


	tag (str, optional) – Sets the QObject name for this label. Defaults to None.






	Returns

	A label with the desired info.



	Return type

	Qlabel
















	
cyckei.functions.gui.line_edit(label, status, key, connect)

	Creates an editable text edit field with given information


	Parameters

	
	label (str) – The label in the box when nothing is written there.


	status (str) – The text of the status tip that appears when the cursor hovers over the label.


	key – The parameter that will be needed by the connected function (connect).


	connect (func) – The function to connect to selecting an item in the dropdown window.






	Returns

	An editable text box object



	Return type

	QLineEdit
















	
cyckei.functions.gui.message(text=None, info=None, icon=PySide2.QtWidgets.QMessageBox.Icon.Information, detail=None, confirm=False)

	Show a QMessageBox with given information.

The QMessageBox defaults to simply a popup window, but can also be used to let the user respond with “yes” or “no” and send a corresponding
bool. The user can change aspects of the window such as body text, informative text, and detail text.


	Parameters

	
	text (str, optional) – The body text of the message. Defaults to None.


	info (str, optional) – In most systems this text is appended to the body text, however in some in appears as smaller text below the body text. Defaults to None.


	icon (int, optional) – An int (0-4) usable for setting the icon in QMessageBox. Defaults to QMessageBox.Information, an enum from the class representing a 1 int.


	detail (str, optional) – This is the text that appears in the extra details section. Defaults to None.


	confirm (bool, optional) – If True gives the user the option to select “Yes” or “No” in the message box. Defaults to False.






	Returns

	returns False if no was selected in the message box, else returns True.



	Return type

	bool
















	
cyckei.functions.gui.not_none(value)

	Sets a None value to “None” string


	Parameters

	value (None) – Expects a None, but able to handle anything convertabile to a str.



	Returns

	Returns “None” as a string or converts the given value to a string and returns it.



	Return type

	str
















	
cyckei.functions.gui.style(app, icon='icon-client.png', highlight='#f05f40')

	Customizes the style of a QApplication window.


	Parameters

	
	app (QApplication) – Any object descended from QApplication.


	icon (str, optional) – The filename, including extension, of an image to be the QIcon for the App. Defaults to “icon-client.png”.


	highlight (str, optional) – The highlight color for the QApp, in HEX color form. Defaults to orange.



















	
cyckei.functions.gui.text_edit(status=None, connect=None, readonly=False, wrap=PySide2.QtWidgets.QPlainTextEdit.LineWrapMode.NoWrap)

	Creates a text box for editing plain text.


	Parameters

	
	status (str, optional) – The text of the status tip that appears when the cursor hovers over the box. Defaults to None.


	connect (func, optional) – When text is changed this function will be executed. Defaults to None.


	readonly (bool, optional) – True makes the text box only readable, not editable. Defaults to False.


	wrap (Const, optional) – Can be NoWrap or WidgetWidth, depending on if the user wants word wrapping in their text box. Defaults to QPlainTextEdit.NoWrap.






	Returns

	The QPlainTextEdit object.



	Return type

	QPlainTextEdit




















Plugins


Abstract Classes for implementing plugins for Cyckei.








	
class cyckei.plugins.cyp_base.BaseController(name, description)

	Abstract Parent class of plugin controller objects.

Creates default methods for interacting with plugin and handling sources.


	
description

	The description given to the user in the info section.


	Type

	str










	
logger

	The logger for the plugin object. Stored in the Plugins folder, named after the name variable.


	Type

	logging.Logger










	
name

	The name of the plugin object.


	Type

	str
















	
__init__(name, description)

	Inits description, logger, and name. Sets up logging and sources for plugin.


	Parameters

	
	name (str) – The name of the plugin object.


	description (str) – The description given to the user in the info section.



















	
cleanup()

	Abstract method.


	Raises

	NotImplementedError – Error always raised as this is an abstract method.
















	
get_logger(name, cyckei_plugin_path)

	Connects the plugin to main Cyckei loggers.

Plugin initially tries to connect to to Cyckei’s main logging handlers.
If this fails, this method establishes a new console handler.
Usually this should be as a result of running the plugin independantly.


	Parameters

	
	name (str) – The name of the plugin object.


	cyckei_plugin_path (str) – The path to the Plugins folder in the Cyckei folder.






	Raises

	FileNotFoundError – Raised when the path given by cyckei_plugin_path doesn’t exist.



	Returns

	The logger for the plugin object. File stored in the Plugins folder, named after the name variable.



	Return type

	logging.Logger
















	
load_sources()

	Abstract method. Searches for available sources, and establishes source objects.


	Raises

	NotImplementedError – Error always raised as this is an abstract method.
















	
read(source)

	Reads data from every source object connected to this plugin controller.

Requires a collection of source objects to be stored in self.sources as a list or dictionary.


	Parameters

	source (int or str) – The index or key of the source object to be read from. Depends on whether the source
objects are stored in a list or dict.



	Returns

	Any type can be returned as this function calls the read function from a source and does no further processing.



	Return type

	Any




















	
class cyckei.plugins.cyp_base.BaseSource

	Parent class of plugin source object. Controls communication with individual devices or channels.








	
__init__()

	Abstract constructor. No definition












	
read()

	Abstract method. Reads data from the source instrument.


	Raises

	NotImplementedError – Error always raised as this is an abstract method.




















	
cyckei.plugins.cyp_base.read_all(controller)

	Performs the read function on every plugin source stored in the the plugin controller.


	Parameters

	controller (BaseController) – A BaseController holding plugin sources to be read from.



	Returns

	A dict with keys as the name of the plugin and values that could be any type.
Any type could be returned from reading a plugin source, as there is no type control before this point.



	Return type

	dict






















          

      

      

    

  

    
      
          
            

   Python Module Index


   
   c
   


   
     		 	

     		
       c	

     
       	[image: -]
       	
       cyckei	
       

     
       	
       	   
       cyckei.client.channel_tab	
       

     
       	
       	   
       cyckei.client.client	
       

     
       	
       	   
       cyckei.client.scripts	
       

     
       	
       	   
       cyckei.client.socket	
       

     
       	
       	   
       cyckei.client.workers	
       

     
       	
       	   
       cyckei.cyckei	
       

     
       	
       	   
       cyckei.explorer.explorer	
       

     
       	
       	   
       cyckei.explorer.log_viewer	
       

     
       	
       	   
       cyckei.explorer.script_editor	
       

     
       	
       	   
       cyckei.explorer.workers	
       

     
       	
       	   
       cyckei.functions.func	
       

     
       	
       	   
       cyckei.functions.gui	
       

     
       	
       	   
       cyckei.plugins.cyp_base	
       

     
       	
       	   
       cyckei.server.keithley2602	
       

     
       	
       	   
       cyckei.server.protocols	
       

     
       	
       	   
       cyckei.server.server	
       

   



          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 


_


  	
      	__init__() (cyckei.client.channel_tab.ChannelTab method)

      
        	(cyckei.client.channel_tab.ChannelWidget method)


        	(cyckei.client.client.MainWindow method)


        	(cyckei.client.scripts.Script method)


        	(cyckei.client.socket.Socket method)


        	(cyckei.client.workers.Check method)


        	(cyckei.client.workers.Control method)


        	(cyckei.client.workers.Ping method)


        	(cyckei.client.workers.Read method)


        	(cyckei.client.workers.UpdateStatus method)


        	(cyckei.explorer.explorer.MainWindow method)


        	(cyckei.plugins.cyp_base.BaseController method)


        	(cyckei.plugins.cyp_base.BaseSource method)


        	(cyckei.server.keithley2602.DeviceController method)


        	(cyckei.server.keithley2602.Source method)


        	(cyckei.server.protocols.CCCharge method)


        	(cyckei.server.protocols.CCDischarge method)


        	(cyckei.server.protocols.CVCharge method)


        	(cyckei.server.protocols.CVDischarge method)


        	(cyckei.server.protocols.CellRunner method)


        	(cyckei.server.protocols.ConditionAbsolute method)


        	(cyckei.server.protocols.ConditionDelta method)


        	(cyckei.server.protocols.ConditionTotalDelta method)


        	(cyckei.server.protocols.ConditionTotalTime method)


        	(cyckei.server.protocols.CurrentStep method)


        	(cyckei.server.protocols.Pause method)


        	(cyckei.server.protocols.ProtocolStep method)


        	(cyckei.server.protocols.Rest method)


        	(cyckei.server.protocols.Sleep method)


        	(cyckei.server.protocols.VoltageStep method)


      


  

  	
      	_next_time (cyckei.server.protocols.CellRunner attribute)


  





A


  	
      	action() (in module cyckei.functions.gui)


      	add() (cyckei.explorer.script_editor.ScriptEditor method)


      	add_step() (cyckei.server.protocols.CellRunner method)


      	advance_cycle() (cyckei.server.protocols.CellRunner method)


  

  	
      	AdvanceCycle (class in cyckei.server.protocols)


      	alert_check() (cyckei.explorer.script_editor.ScriptEditor method)


      	alternate_colors() (cyckei.client.channel_tab.ChannelTab method)


      	asset_path() (in module cyckei.functions.func)


      	attributes (cyckei.client.channel_tab.ChannelWidget attribute)


  





B


  	
      	BaseController (class in cyckei.plugins.cyp_base)


      	BaseSource (class in cyckei.plugins.cyp_base)


  

  	
      	button() (cyckei.client.channel_tab.ChannelWidget method)

      
        	(in module cyckei.functions.gui)


      


  





C


  	
      	cap_sign (cyckei.server.protocols.ProtocolStep attribute)


      	CCCharge (class in cyckei.server.protocols)


      	CCDischarge (class in cyckei.server.protocols)


      	CellRunner (class in cyckei.server.protocols)


      	channel (cyckei.client.workers.Control attribute)

      
        	(cyckei.client.workers.Read attribute)


        	(cyckei.server.keithley2602.Source attribute)


        	(cyckei.server.protocols.CellRunner attribute)


      


      	channel_info (cyckei.client.client.MainWindow attribute)


      	channels (cyckei.client.channel_tab.ChannelTab attribute)

      
        	(cyckei.client.client.MainWindow attribute)


        	(cyckei.client.workers.UpdateStatus attribute)


      


      	ChannelTab (class in cyckei.client.channel_tab)


      	channelView (cyckei.client.client.MainWindow attribute)


      	ChannelWidget (class in cyckei.client.channel_tab)


      	chd (cyckei.server.keithley2602.Source attribute)


      	Check (class in cyckei.client.workers)

      
        	(class in cyckei.explorer.workers)


      


      	check() (cyckei.explorer.script_editor.ScriptEditor method)

      
        	(cyckei.server.protocols.Condition method)


        	(cyckei.server.protocols.ConditionAbsolute method)


        	(cyckei.server.protocols.ConditionDelta method)


        	(cyckei.server.protocols.ConditionTotalDelta method)


        	(cyckei.server.protocols.ConditionTotalTime method)


      


      	check_end_conditions() (cyckei.server.protocols.ProtocolStep method)


      	check_in_control() (cyckei.server.protocols.AdvanceCycle method)

      
        	(cyckei.server.protocols.CurrentStep method)


        	(cyckei.server.protocols.Pause method)


        	(cyckei.server.protocols.ProtocolStep method)


        	(cyckei.server.protocols.Rest method)


        	(cyckei.server.protocols.Sleep method)


        	(cyckei.server.protocols.VoltageStep method)


      


      	check_report_conditions() (cyckei.server.protocols.ProtocolStep method)


      	cleanup() (cyckei.plugins.cyp_base.BaseController method)


      	close() (cyckei.server.protocols.CellRunner method)


      	closeEvent() (cyckei.client.client.MainWindow method)


      	ColorFormatter (class in cyckei.cyckei)


      	combo_box() (in module cyckei.functions.gui)


      	command (cyckei.client.workers.Control attribute)


      	comparison (cyckei.server.protocols.ConditionAbsolute attribute)

      
        	(cyckei.server.protocols.ConditionDelta attribute)


        	(cyckei.server.protocols.ConditionTotalDelta attribute)


      


      	Condition (class in cyckei.server.protocols)


      	condition_dc() (in module cyckei.server.protocols)


      	condition_di() (in module cyckei.server.protocols)


  

  	
      	condition_dt() (in module cyckei.server.protocols)


      	condition_dv() (in module cyckei.server.protocols)


      	condition_end_voltage() (in module cyckei.server.protocols)


      	condition_lcv() (in module cyckei.server.protocols)


      	condition_max_current() (in module cyckei.server.protocols)


      	condition_min_current() (in module cyckei.server.protocols)


      	condition_total_time() (in module cyckei.server.protocols)


      	condition_ucv() (in module cyckei.server.protocols)


      	ConditionAbsolute (class in cyckei.server.protocols)


      	ConditionDelta (class in cyckei.server.protocols)


      	ConditionTotalDelta (class in cyckei.server.protocols)


      	ConditionTotalTime (class in cyckei.server.protocols)


      	config (cyckei.client.channel_tab.ChannelTab attribute)

      
        	(cyckei.client.channel_tab.ChannelWidget attribute)


        	(cyckei.client.client.MainWindow attribute)


        	(cyckei.client.socket.Socket attribute)


        	(cyckei.client.workers.Check attribute)


        	(cyckei.client.workers.Control attribute)


        	(cyckei.client.workers.Ping attribute)


        	(cyckei.client.workers.Read attribute)


        	(cyckei.client.workers.UpdateStatus attribute)


      


      	content (cyckei.client.scripts.Script attribute)


      	Control (class in cyckei.client.workers)

      
        	(class in cyckei.explorer.workers)


      


      	create_menu() (cyckei.client.client.MainWindow method)


      	current (cyckei.server.protocols.CurrentStep attribute)


      	current_step (cyckei.server.protocols.CellRunner attribute)


      	CurrentStep (class in cyckei.server.protocols)


      	CVCharge (class in cyckei.server.protocols)


      	CVDischarge (class in cyckei.server.protocols)


      	cyckei.client.channel_tab (module)


      	cyckei.client.client (module)


      	cyckei.client.scripts (module)


      	cyckei.client.socket (module)


      	cyckei.client.workers (module)


      	cyckei.cyckei (module)


      	cyckei.explorer.explorer (module)


      	cyckei.explorer.log_viewer (module)


      	cyckei.explorer.script_editor (module)


      	cyckei.explorer.workers (module)


      	cyckei.functions.func (module)


      	cyckei.functions.gui (module)


      	cyckei.plugins.cyp_base (module)


      	cyckei.server.keithley2602 (module)


      	cyckei.server.protocols (module)


      	cyckei.server.server (module)


  





D


  	
      	data (cyckei.server.keithley2602.Source attribute)

      
        	(cyckei.server.protocols.ProtocolStep attribute)


      


      	data_max_len (cyckei.server.keithley2602.Source attribute)

      
        	(cyckei.server.protocols.ProtocolStep attribute)


      


      	default_color (cyckei.client.channel_tab.ChannelWidget attribute)


  

  	
      	delete() (cyckei.explorer.script_editor.ScriptEditor method)


      	delta (cyckei.server.protocols.ConditionDelta attribute)

      
        	(cyckei.server.protocols.ConditionTotalDelta attribute)


      


      	description (cyckei.plugins.cyp_base.BaseController attribute)


      	DeviceController (class in cyckei.server.keithley2602)


      	divider (cyckei.client.channel_tab.ChannelWidget attribute)


  





E


  	
      	end_conditions (cyckei.server.protocols.ProtocolStep attribute)


  

  	
      	event_loop() (in module cyckei.server.server)


      	extrapolate_time() (in module cyckei.server.protocols)


  





F


  	
      	feedback (cyckei.client.channel_tab.ChannelWidget attribute)


      	feedback() (in module cyckei.functions.gui)


      	file_structure() (in module cyckei.cyckei)


  

  	
      	Folder (class in cyckei.explorer.log_viewer)


      	format() (cyckei.cyckei.ColorFormatter method)


      	fpath (cyckei.server.protocols.CellRunner attribute)


  





G


  	
      	get_controls() (cyckei.client.channel_tab.ChannelWidget method)


      	get_logger() (cyckei.plugins.cyp_base.BaseController method)


      	get_range() (cyckei.server.keithley2602.Source method)


      	get_runner_by_channel() (in module cyckei.server.server)


      	get_settings() (cyckei.client.channel_tab.ChannelWidget method)

      
        	(cyckei.explorer.script_editor.InsertBar method)


      


  

  	
      	get_source() (cyckei.server.keithley2602.DeviceController method)


      	gpib_addr (cyckei.server.keithley2602.DeviceController attribute)


      	GraphCanvas (class in cyckei.explorer.log_viewer)


      	guess_i_limit() (cyckei.server.protocols.VoltageStep method)


  





H


  	
      	handle_exception() (in module cyckei.cyckei)


      	header() (cyckei.server.protocols.CurrentStep method)

      
        	(cyckei.server.protocols.ProtocolStep method)


        	(cyckei.server.protocols.Rest method)


        	(cyckei.server.protocols.Sleep method)


        	(cyckei.server.protocols.VoltageStep method)


      


  

  	
      	help() (cyckei.explorer.script_editor.ScriptEditor method)


  





I


  	
      	i_current_step (cyckei.server.protocols.CellRunner attribute)


      	i_limit (cyckei.server.protocols.VoltageStep attribute)


      	identification (cyckei.server.keithley2602.Source attribute)


      	in_control (cyckei.server.protocols.ProtocolStep attribute)


      	index (cyckei.server.protocols.ConditionAbsolute attribute)

      
        	(cyckei.server.protocols.ConditionDelta attribute)


        	(cyckei.server.protocols.ConditionTotalDelta attribute)


      


      	info_all_channels() (cyckei.client.socket.Socket method)

      
        	(in module cyckei.server.server)


      


  

  	
      	info_channel() (cyckei.client.socket.Socket method)

      
        	(in module cyckei.server.server)


      


      	info_plugins() (cyckei.client.socket.Socket method)


      	info_server_file() (cyckei.client.socket.Socket method)

      
        	(in module cyckei.server.server)


      


      	InsertBar (class in cyckei.explorer.script_editor)


      	is_time (cyckei.server.protocols.ConditionDelta attribute)


      	isTest (cyckei.server.protocols.CellRunner attribute)


  





J


  	
      	json (cyckei.client.channel_tab.ChannelWidget attribute)


  





K


  	
      	kch (cyckei.server.keithley2602.Source attribute)


  





L


  	
      	label() (in module cyckei.functions.gui)


      	last_data (cyckei.server.protocols.CellRunner attribute)


      	last_time (cyckei.server.protocols.ProtocolStep attribute)


      	legal_test() (cyckei.client.workers.Check method)

      
        	(cyckei.explorer.workers.Check method)


      


      	line_edit() (in module cyckei.functions.gui)


      	list_clicked() (cyckei.explorer.script_editor.ScriptEditor method)


      	load_plugins() (in module cyckei.cyckei)


  

  	
      	load_protocol() (cyckei.server.protocols.CellRunner method)


      	load_sources() (cyckei.plugins.cyp_base.BaseController method)


      	lock_settings() (cyckei.client.channel_tab.ChannelWidget method)


      	Log (class in cyckei.explorer.log_viewer)


      	log_clicked() (cyckei.explorer.log_viewer.LogViewer method)


      	LogDisplay (class in cyckei.explorer.log_viewer)


      	logger (cyckei.plugins.cyp_base.BaseController attribute)


      	LogViewer (class in cyckei.explorer.log_viewer)


  





M


  	
      	main() (in module cyckei.client.client)

      
        	(in module cyckei.cyckei)


        	(in module cyckei.explorer.explorer)


        	(in module cyckei.server.server)


      


      	MainWindow (class in cyckei.client.client)

      
        	(class in cyckei.explorer.explorer)


      


  

  	
      	make_config() (in module cyckei.cyckei)


      	message() (in module cyckei.functions.gui)


      	meta (cyckei.server.protocols.CellRunner attribute)


      	min_time (cyckei.server.protocols.ConditionAbsolute attribute)


  





N


  	
      	name (cyckei.plugins.cyp_base.BaseController attribute)


      	new() (cyckei.explorer.script_editor.ScriptEditor method)


      	next_step() (cyckei.server.protocols.CellRunner method)


      	next_time (cyckei.server.protocols.CellRunner attribute)

      
        	(cyckei.server.protocols.ConditionAbsolute attribute)


        	(cyckei.server.protocols.ConditionTotalDelta attribute)


        	(cyckei.server.protocols.ProtocolStep attribute)


      


  

  	
      	not_none() (in module cyckei.functions.func)

      
        	(in module cyckei.functions.gui)


      


  





O


  	
      	off() (cyckei.server.keithley2602.Source method)

      
        	(cyckei.server.protocols.CellRunner method)


      


  

  	
      	open() (cyckei.explorer.script_editor.ScriptEditor method)


      	open_explorer() (cyckei.explorer.log_viewer.LogViewer method)


  





P


  	
      	paintEvent() (cyckei.client.channel_tab.ChannelTab method)

      
        	(cyckei.client.channel_tab.ChannelWidget method)


      


      	parent (cyckei.server.protocols.ProtocolStep attribute)


      	parse_args() (in module cyckei.cyckei)


      	parse_gpib_address() (in module cyckei.server.keithley2602)


      	path (cyckei.client.scripts.Script attribute)


      	Pause (class in cyckei.server.protocols)


      	pause() (cyckei.server.keithley2602.Source method)

      
        	(cyckei.server.protocols.CellRunner method)


        	(cyckei.server.protocols.ProtocolStep method)


        	(in module cyckei.server.server)


      


      	pause_start (cyckei.server.protocols.ProtocolStep attribute)


      	pause_time (cyckei.server.protocols.ProtocolStep attribute)


  

  	
      	Ping (class in cyckei.client.workers)


      	ping() (cyckei.client.socket.Socket method)


      	ping_server() (cyckei.client.client.MainWindow method)


      	plugin_dialog() (cyckei.client.client.MainWindow method)


      	plugin_objects (cyckei.server.protocols.CellRunner attribute)


      	prepare_json() (cyckei.client.workers.Check method)

      
        	(in module cyckei.client.workers)


      


      	prev_cycle (cyckei.server.protocols.CellRunner attribute)


      	process_ends() (in module cyckei.server.protocols)


      	process_reports() (in module cyckei.server.protocols)


      	process_socket() (in module cyckei.server.server)


      	protocol (cyckei.client.workers.Check attribute)


      	ProtocolStep (class in cyckei.server.protocols)


  





Q


  	
      	query() (cyckei.server.keithley2602.Source method)


  





R


  	
      	Read (class in cyckei.client.workers)


      	read() (cyckei.plugins.cyp_base.BaseController method)

      
        	(cyckei.plugins.cyp_base.BaseSource method)


      


      	read_all() (in module cyckei.plugins.cyp_base)


      	read_and_write() (cyckei.server.protocols.CellRunner method)


      	read_data() (cyckei.server.keithley2602.Source method)

      
        	(cyckei.server.protocols.ProtocolStep method)


        	(cyckei.server.protocols.Sleep method)


      


      	read_iv() (cyckei.server.keithley2602.Source method)


      	read_until() (cyckei.server.keithley2602.Source method)


      	record_data() (in module cyckei.server.server)


      	report (cyckei.server.keithley2602.Source attribute)

      
        	(cyckei.server.protocols.ProtocolStep attribute)


      


      	report_conditions (cyckei.server.protocols.ProtocolStep attribute)


      	resource (cyckei.client.channel_tab.ChannelTab attribute)


      	Rest (class in cyckei.server.protocols)


      	rest() (cyckei.server.keithley2602.Source method)


  

  	
      	resume() (cyckei.server.protocols.CellRunner method)

      
        	(cyckei.server.protocols.Pause method)


        	(cyckei.server.protocols.ProtocolStep method)


        	(in module cyckei.server.server)


      


      	run() (cyckei.client.workers.Check method)

      
        	(cyckei.client.workers.Control method)


        	(cyckei.client.workers.Ping method)


        	(cyckei.client.workers.Read method)


        	(cyckei.client.workers.UpdateStatus method)


        	(cyckei.explorer.workers.Check method)


        	(cyckei.explorer.workers.Control method)


        	(cyckei.server.protocols.AdvanceCycle method)


        	(cyckei.server.protocols.CellRunner method)


        	(cyckei.server.protocols.Pause method)


        	(cyckei.server.protocols.ProtocolStep method)


        	(cyckei.server.protocols.Sleep method)


      


      	run_test() (cyckei.client.workers.Check method)


  





S


  	
      	safety_reset_seconds (cyckei.server.keithley2602.DeviceController attribute)

      
        	(cyckei.server.keithley2602.Source attribute)


        	(cyckei.server.protocols.CellRunner attribute)


      


      	save() (cyckei.client.scripts.Script method)

      
        	(cyckei.explorer.script_editor.Script method)


        	(cyckei.explorer.script_editor.ScriptEditor method)


      


      	Script (class in cyckei.client.scripts)

      
        	(class in cyckei.explorer.script_editor)


      


      	script (cyckei.client.workers.Control attribute)


      	script_label (cyckei.client.channel_tab.ChannelWidget attribute)


      	ScriptEditor (class in cyckei.explorer.script_editor)


      	send() (cyckei.client.socket.Socket method)


      	send_file() (cyckei.client.socket.Socket method)


      	set() (cyckei.client.channel_tab.ChannelWidget method)


      	set_bg_color() (cyckei.client.channel_tab.ChannelWidget method)


      	set_cap_signs() (cyckei.server.protocols.CellRunner method)


      	set_current() (cyckei.server.keithley2602.Source method)


      	set_plugin() (cyckei.client.channel_tab.ChannelWidget method)


      	set_script() (cyckei.client.channel_tab.ChannelWidget method)


      	set_source() (cyckei.server.protocols.CellRunner method)


      	set_state() (cyckei.client.channel_tab.ChannelWidget method)


      	set_text() (cyckei.server.keithley2602.Source method)


      	set_voltage() (cyckei.server.keithley2602.Source method)


      	settings (cyckei.client.channel_tab.ChannelWidget attribute)


      	setup_file_list() (cyckei.explorer.script_editor.ScriptEditor method)


      	Signals (class in cyckei.client.workers)

      
        	(class in cyckei.explorer.workers)


      


  

  	
      	signals (cyckei.client.workers.Check attribute)

      
        	(cyckei.client.workers.Control attribute)


        	(cyckei.client.workers.Ping attribute)


        	(cyckei.client.workers.Read attribute)


      


      	Sleep (class in cyckei.server.protocols)


      	snum (cyckei.server.keithley2602.Source attribute)


      	Socket (class in cyckei.client.socket)


      	socket (cyckei.client.socket.Socket attribute)


      	Source (class in cyckei.server.keithley2602)


      	source (cyckei.server.protocols.CellRunner attribute)


      	source_meter (cyckei.server.keithley2602.DeviceController attribute)

      
        	(cyckei.server.keithley2602.Source attribute)


      


      	start() (in module cyckei.server.server)


      	start_logging() (in module cyckei.cyckei)


      	start_time (cyckei.server.protocols.CellRunner attribute)


      	starting_capacity (cyckei.server.protocols.ProtocolStep attribute)


      	state (cyckei.client.channel_tab.ChannelWidget attribute)


      	state_changed (cyckei.client.channel_tab.ChannelWidget attribute)


      	state_str (cyckei.server.protocols.ProtocolStep attribute)


      	status (cyckei.client.channel_tab.ChannelWidget attribute)

      
        	(cyckei.server.protocols.CellRunner attribute)


        	(cyckei.server.protocols.ProtocolStep attribute)


      


      	status_bar (cyckei.client.client.MainWindow attribute)


      	step (cyckei.server.protocols.CellRunner attribute)


      	steps (cyckei.server.protocols.CellRunner attribute)


      	stop() (cyckei.server.protocols.CellRunner method)

      
        	(in module cyckei.server.server)


      


      	style() (in module cyckei.functions.gui)


  





T


  	
      	temp (cyckei.client.workers.Control attribute)


      	test() (in module cyckei.server.server)


      	text_edit() (in module cyckei.functions.gui)


      	text_modified() (cyckei.explorer.script_editor.ScriptEditor method)


      	threadpool (cyckei.client.channel_tab.ChannelWidget attribute)

      
        	(cyckei.client.client.MainWindow attribute)


      


  

  	
      	time_conversion() (in module cyckei.server.protocols)


      	timer (cyckei.client.channel_tab.ChannelTab attribute)


      	title (cyckei.client.scripts.Script attribute)


      	total_pause_time (cyckei.server.protocols.CellRunner attribute)


  





U


  	
      	unlock_settings() (cyckei.client.channel_tab.ChannelWidget method)


      	update() (cyckei.explorer.log_viewer.LogDisplay method)

      
        	(cyckei.explorer.script_editor.InsertBar method)


      


      	update_editor() (cyckei.explorer.script_editor.ScriptEditor method)


  

  	
      	update_status() (cyckei.client.channel_tab.ChannelTab method)

      
        	(cyckei.client.scripts.Script method)


        	(cyckei.explorer.script_editor.Script method)


      


      	UpdateStatus (class in cyckei.client.workers)


  





V


  	
      	v_limit (cyckei.server.protocols.CurrentStep attribute)


      	value (cyckei.server.protocols.ConditionAbsolute attribute)


      	value_str (cyckei.server.protocols.ConditionAbsolute attribute)

      
        	(cyckei.server.protocols.ConditionDelta attribute)


        	(cyckei.server.protocols.ConditionTotalDelta attribute)


      


  

  	
      	voltage (cyckei.server.protocols.VoltageStep attribute)


      	VoltageStep (class in cyckei.server.protocols)


  





W


  	
      	wait_time (cyckei.server.protocols.ProtocolStep attribute)


      	with_safety() (in module cyckei.server.keithley2602)


      	write() (cyckei.server.keithley2602.Source method)


  

  	
      	write_cycle_header() (cyckei.server.protocols.CellRunner method)


      	write_data() (cyckei.server.protocols.CellRunner method)


      	write_header() (cyckei.server.protocols.CellRunner method)


      	write_step_header() (cyckei.server.protocols.CellRunner method)


  







          

      

      

    

  _static/images/explorer-scripts.png
Scripts = Results

V/I Value Report Thresh... | Report Interval... | End Threshhold = End Duration (...

Edit Protocol to Generate... Insert

/Users/gabriel/Cyckei/scripts/example

# This script demonstrates some basic Cyckei functions. For more information, view the help document at Menu >
# This script charges to 4 V at 10 mA, then discharges at 10 mA to 3 V. It then collects data for five minutes withou
# The cycle is repeated five times.

foriin range(10):
AdvanceCycle()
CCCharge(0.01, reports=(("voltage", 0.01), ("time", ":5:")), ends=(("voltage", ">", 4), ("time", ">", "2::")))
CCDischarge(0.01, reports=(("voltage", 0.01), ("time", ":5:")), ends=(("voltage", "<", 3), ("time", ">", "2::'
Sleep(reports=(("time", ":1:"),), ends=(("time", ">", ":5:"),))

1






_static/images/plugins.png
Script:

Cell ID:

Comment:

Randomizer Source:

Cyckei Client

Mettler-Scale Source:

Log File: Start Stop Check Pause = Resume
1: | OpenFile Filename ID Comme... Randomizerll ~ None v
Script: None
Could not get status!
Script: Log File: Cell ID: Comment:  Randomizer Source: Mettler-Scale Source: Start Stop Check Pause Resume
2: OpenFile Filename ID Comme... None ~ Balance1 v
Script: None
. Plugins:
randomizer Randomizer Source: Mettler-Scale Source: Start Stop Check Pause Resume
. . L None ~ None v
Default Cyckei plugin to demonstrate functionality.
Generates random numbers.
Sources: ['Randomizer I', 'Randomizer ']
mettler-scale
Plugin to retrieve weight from Mettler Toledo scale. ~ Randomizer Source: Mettler-Scale Source: Start Stop Check EAEe BEeme
Sources: ['Balance 1'] NaES - None -

Canld nat At ctatiiel

s J

y

Foarw L he et





_images/plugins.png
Script:

Cell ID:

Comment:

Randomizer Source:

Cyckei Client

Mettler-Scale Source:

Log File: Start Stop Check Pause = Resume
1: | OpenFile Filename ID Comme... Randomizerll ~ None v
Script: None
Could not get status!
Script: Log File: Cell ID: Comment:  Randomizer Source: Mettler-Scale Source: Start Stop Check Pause Resume
2: OpenFile Filename ID Comme... None ~ Balance1 v
Script: None
. Plugins:
randomizer Randomizer Source: Mettler-Scale Source: Start Stop Check Pause Resume
. . L None ~ None v
Default Cyckei plugin to demonstrate functionality.
Generates random numbers.
Sources: ['Randomizer I', 'Randomizer ']
mettler-scale
Plugin to retrieve weight from Mettler Toledo scale. ~ Randomizer Source: Mettler-Scale Source: Start Stop Check EAEe BEeme
Sources: ['Balance 1'] NaES - None -

Canld nat At ctatiiel

s J

y

Foarw L he et





_static/ajax-loader.gif





_images/explorer-results.png
Cyckei Explorer

Scripts | Results

2020-1 /Users/gabriel/Cyckei/tests/2020-1/B5SNGEA 14B.pyb

2020
2019-12 B5NGEA 14B 2019-12-22_15:32:52.593359 No Comment

# Just brute force 100mV steps
AdvanceCycle()
CCCharge(0.01, reports=(("voltage",0.005), ("tim:
Sleep(reports=(("time"":5:"),), ends=(("time"">";
ABE.txt CCCharge(0.01, reports=(("voltage",0.005), ("time"":5:
B6NG6EA 14B.txt : : . = s :
.DS_Store {"cycle": 0}
B5NGEA 14B.pyb {"cycle": 1}
{"state": "charge_constant_current" "date_start_timestr": "20
2.1258771 0.00999976 316203 O
12.468303 0.00999982 316469 0.02872837
{"state": "sleep" "date_start_timestr": "2019-12-22_15:33:05.23¢
14.667525 (0] 316242 0.02872837
316.73172 (0] 316184 0.02872837
618.8803 (0] 316187 0.02872837
921.02788 (0] 316192 0.02872837
122314 0 0.02872837
1525.2147 316202 0.02872837
1827.2599 316207 0.02872837
2129.3575 316211  0.02872837

2431.4017 316218 0.02872837
n7292 21210 242994  NNN077027 0 5000010000@5000@0000@50000

Open Folder






_images/explorer-scripts.png
Scripts = Results

V/I Value Report Thresh... | Report Interval... | End Threshhold = End Duration (...

Edit Protocol to Generate... Insert

/Users/gabriel/Cyckei/scripts/example

# This script demonstrates some basic Cyckei functions. For more information, view the help document at Menu >
# This script charges to 4 V at 10 mA, then discharges at 10 mA to 3 V. It then collects data for five minutes withou
# The cycle is repeated five times.

foriin range(10):
AdvanceCycle()
CCCharge(0.01, reports=(("voltage", 0.01), ("time", ":5:")), ends=(("voltage", ">", 4), ("time", ">", "2::")))
CCDischarge(0.01, reports=(("voltage", 0.01), ("time", ":5:")), ends=(("voltage", "<", 3), ("time", ">", "2::'
Sleep(reports=(("time", ":1:"),), ends=(("time", ">", ":5:"),))

1






_static/comment-close.png





_static/comment.png





_static/comment-bright.png





_static/down-pressed.png





_static/down.png





_images/client.png
[ JON ] Cyckei Client

Script: Log File: Cell ID: Comment: randomizer Source: Start Stop Check Pause Resume
1: |Open File | |Filename ID Comment None v
Script: None
Could not get status!

Script: Log File: Cell ID: Comment: randomizer Source: Start Stop Check Pause Resume
2: | Open File | |Filename ID Comment None v
Script: None
Could not get status!

Script: Log File: Cell ID: Comment: randomizer Source: Start Stop Check Pause Resume
3: |Open File | |Filename ID Comment None v
Script: None
Could not get status!

Script: Log File: Cell ID: Comment: randomizer Source: Start Stop Check Pause Resume
4: | Open File | |Filename ID Comment None v

Script: None

Canld nat Aat ctatiiel

Current script






nav.xhtml

    
      Table of Contents


      
        		
          About the Cyckei Project
        


      


    
  

_static/plus.png





_static/file.png





_static/minus.png





_static/images/client-low.png
e0e Cyckei Client

Script: Log File: cellID: Comment: randomizer Source: Start Stop Check || Pause || Resume
1: | OpenFile | Filename D Comment None ~
Script: None

Could not get status!

Seriot: Log File: celin: Comment: randomizer Source: Start Stop Check | [ Pause | [ Resume
2: | OpenFile | Filename D Comment None -
Script: None

Could not get status!

Script: Log File: cellID: Comment: randomizer Source: Start Stop Check || Pause || Resume
3: | Open File | Filename D Comment None ~
Script: None

Could not get status!

Seriot: Log File: celin: Comment: randomizer Source: Start Stop Check | [ Pause | [ Resume
4: | OpenFile | Filename D Comment None -
Script: None

Ll nnt mat etatiel

Current script






_static/images/client.png
[ JON ] Cyckei Client

Script: Log File: Cell ID: Comment: randomizer Source: Start Stop Check Pause Resume
1: |Open File | |Filename ID Comment None v
Script: None
Could not get status!

Script: Log File: Cell ID: Comment: randomizer Source: Start Stop Check Pause Resume
2: | Open File | |Filename ID Comment None v
Script: None
Could not get status!

Script: Log File: Cell ID: Comment: randomizer Source: Start Stop Check Pause Resume
3: |Open File | |Filename ID Comment None v
Script: None
Could not get status!

Script: Log File: Cell ID: Comment: randomizer Source: Start Stop Check Pause Resume
4: | Open File | |Filename ID Comment None v

Script: None

Canld nat Aat ctatiiel

Current script






_static/up-pressed.png





_static/up.png





_static/images/explorer-results.png
Cyckei Explorer

Scripts | Results

2020-1 /Users/gabriel/Cyckei/tests/2020-1/B5SNGEA 14B.pyb

2020
2019-12 B5NGEA 14B 2019-12-22_15:32:52.593359 No Comment

# Just brute force 100mV steps
AdvanceCycle()
CCCharge(0.01, reports=(("voltage",0.005), ("tim:
Sleep(reports=(("time"":5:"),), ends=(("time"">";
ABE.txt CCCharge(0.01, reports=(("voltage",0.005), ("time"":5:
B6NG6EA 14B.txt : : . = s :
.DS_Store {"cycle": 0}
B5NGEA 14B.pyb {"cycle": 1}
{"state": "charge_constant_current" "date_start_timestr": "20
2.1258771 0.00999976 316203 O
12.468303 0.00999982 316469 0.02872837
{"state": "sleep" "date_start_timestr": "2019-12-22_15:33:05.23¢
14.667525 (0] 316242 0.02872837
316.73172 (0] 316184 0.02872837
618.8803 (0] 316187 0.02872837
921.02788 (0] 316192 0.02872837
122314 0 0.02872837
1525.2147 316202 0.02872837
1827.2599 316207 0.02872837
2129.3575 316211  0.02872837

2431.4017 316218 0.02872837
n7292 21210 242994  NNN077027 0 5000010000@5000@0000@50000

Open Folder






